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Organization of the Course

Advanced Econometrics II — Nonlinear Methods and Applications is a graduate-level course
in regression analysis focusing on specialized econometric tools. We cover topics such as
linear regression, panel data methods, causal inference, high-dimensional regression, and time
series methods. Emphasis is on both theoretical understanding of the methods and practical
applications using the R programming language.

Timetable

See KLIPS Lecture and KLIPS Exercises for a detailed schedule.
Note: On Wednesday, April 16, we will have a lecture instead of exercises.

Please bring your own laptop to the Wednesday exercise sessions. If you do not have a laptop
available, please let me know by email.

Lecture Material

o This online script and its pdf version
o eWhiteboard
¢ Rscripts and additional files: sciebo folder

More info on exam: ILIAS course

Day Time Lecture Hall Session Type
Monday 14:00 - 15:30 | H80 (Philosophikum) | Lecture
Wednesday | 17:45 - 19:15 | S82 (Philosophikum) | Exercises



https://klips2.uni-koeln.de/co/wbTermin_list.wbLehrveranstaltung?pStpSpNr=492647
https://klips2.uni-koeln.de/co/wbTermin_list.wbLehrveranstaltung?pStpSpNr=494062
https://metrics.svenotto.com
https://metrics.svenotto.com/Advanced-Econometrics-II.pdf
https://uni-koeln.sciebo.de/s/Mn3wGWcp8x39Etm
https://uni-koeln.sciebo.de/s/a04v6D2kGcq3Oyx
https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_6203188.html

Literature

The script is self-contained. To prepare well for the exam, it’s a good idea to read this script.

The course is based on James H. Stock and Mark W. Watson’s Introduction to Economet-
rics (Fourth Edition). The Stock and Watson textbook is available for download: PDF by
chapter (Uni Kéln VPN connection required).

Further recommended textbooks are:

e FEconometric Theory and Methods, by Russell Davidson and James G. MacKinnon. PDF.

e FEconometric Analysis of Cross Section and Panel Data, by Jeffrey M. Wooldridge. PDF
by chapter.

o An Introduction to Statistical Learning with Applications to R (Second Edition), by
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. PDF.

o Causal Inference: The Miztape, by Scott Cunningham. Online version.

e Mostly Harmelss Econometrics, by J. Angrist and J. Pischke PDF by chapter.

Printed versions of the books are available from the university library.

Assessment

The course will be graded by a 90-minute exam. For detailed information please visit the
ILTAS course.

Communication
Feel free to use the ILIAS Metrics Forum to discuss lecture topics and ask questions. Please

let me know if you find any typos in the lecture material. Of course, you can reach me via
e-mail: sven.otto@uni-koeln.de

Important Dates

Registration deadline exam 1 July 28, 2025
Exam 1 August 04, 2025
Registration deadline exam 2 | September 12, 2025
Exam 2 (alternate date) September 19, 2025

Please register for the exam on time. If you miss the registration deadline, you will not be
able to take the exam (the Examinations Office is very strict about this). You only need to


https://elibrary.pearson.de/book/99.150005/9781292264523
https://elibrary.pearson.de/book/99.150005/9781292264523
http://qed.econ.queensu.ca/ETM/
https://ebookcentral.proquest.com/lib/ubkoeln/detail.action?docID=6322042
https://ebookcentral.proquest.com/lib/ubkoeln/detail.action?docID=6322042
https://www.statlearning.com/
https://mixtape.scunning.com/
https://www.degruyter.com/document/doi/10.1515/9781400829828/html#contents
https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_6203188.html
https://www.ilias.uni-koeln.de/ilias/goto_uk_frm_6270812.html

take one of the two exams to complete the course. The second exam will serve as a make-up
exam for those who fail the first exam or do not take the first exam.

R-Packages

To run the R code of the lecture script, you will need to install some additional packages. Here
are the most important ones for this lecture:

install.packages(
c("fixest", "AER", "moments", "glmnet", "urca", "caret", "neuralnet",
"dplyr", "knitr", "tinytex", "stargazer", "scatterplot3d", "readxl", "modelsummary")

)

Some further datasets are contained in my package TeachData, which is available in a GitHub
repository. It can be installed using the following command:

install.packages("remotes")
remotes: :install_github("ottosven/TeachData")

10
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1 Data

1.1 Data Structures

Univariate Datasets

A univariate dataset consists of a sequence of observations:

Y,,...Y,

-
These n observations form a data vector:

Y =(v,,...Y,).

Example: Survey of six individuals on their hourly earnings. Data vector:

10.40
18.68
12.44
54.73
24.27
24.41

Multivariate Datasets

Typically, we have data on more than one variable, such as years of education and gender.
Categorical variables are often encoded as dummy variables, which are binary variables.
The female dummy variable is defined as:

D — 1 if person 7 is female,
‘ 0 otherwise.

person wage education female

1 10.40 12 0

12



person wage education female

2 18.68
3 12.44
4 54.73
5 24.27
6 24.41

16
14
18
14
12

_ o O = O

A k-variate dataset (or multivariate dataset) is a collection of n observations on k variables:

X, ... X

ne

The i-th vector contains the data on all k£ variables for individual :

X, = (X, ...

(2

7Xik)/'

Thus, X;; represents the value for the j-th variable of individual ¢. The full k-variate dataset

is structured in the n x k data matrix X:

X X1
X = : = :
X;L an

The i-th row in X corresponds to the values from X.

transpose notation X, which is a row vector.

The data matrix for our example is:

10.40
18.68
12.44
54.73
24.27
24.41

13
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14
18
14
12

Xlk)
Xnk

Since X; is a column vector, we use the

_ O O = O O



with data vectors:
10.40

18.68

12.44

Matrix Algebra

Vector and matrix algebra provide a compact mathematical representation of multivariate data
and an efficient framework for analyzing and implementing statistical methods. We will use
matrix algebra frequently throughout this course.

To refresh or enhance your knowledge of matrix algebra, consult the following resources:

@ Crash Course on Matrix Algebra:

matrix.svenotto.com (in particular Sections 1-3)
Section 19.1 of the Stock and Watson textbook also provides a brief overview of matrix
algebra concepts.

1.2 R Programming

The best way to learn statistical methods is to program and apply them yourself. We will use
the R programming language for implementing econometric methods and analyzing datasets.
If you are just starting with R, it is crucial to familiarize yourself with its basics. Here’s an
introductory tutorial, which contains a lot of valuable resources:

@ Getting Started with R:

rintro.svenotto.com

The interactive R package SWIRL offers an excellent way to learn directly within the R environ-
ment. A highly recommended online book to learn R programming is Hands-On Programming
with R.

14
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https://rstudio-education.github.io/hopr/
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One of R’s greatest strengths is its vast package ecosystem developed by the statistical commu-
nity. The AER package (“Applied Econometrics with R”) provides a comprehensive collection
of tools for applied econometrics.

You can install the package with the command install.packages("AER") and you can load
it with:

library (AER)

at the beginning of your code.

1.3 Datasets in R

CASchools Dataset
Let’s load the CASchools dataset from the AER package:

data(CASchools, package = "AER")

The dataset is used throughout Sections 4-8 of Stock and Watson’s textbook Introduction to
Econometrics. Tt was collected in 1998 and captures California school characteristics including
test scores, teacher salaries, student demographics, and district-level metrics.

Variable Description Variable Description

district  District identifier lunch % receiving free meals
school School name computer Number of computers
county County name expenditure Spending per student ($)
grades Through 6th or 8h income District avg income ($000s)
students Total enrollment english Non-native English (%)
teachers Teaching staff read Average reading score
calworks % CalWorks aid math Average math score

The Environment pane in RStudio’s top-right corner displays all objects currently in your
workspace, including the CASchools dataset. You can click on CASchools to open a table
viewer and explore its contents. To get a description of the dataset, use the ?CASchools
command.

15
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Data Frames
The CASchools dataset is stored as a data.frame, R’s most common data storage class for
tabular data as in the data matrix X. It organizes data in the form of a table, with variables

as columns and observations as rows.

class(CASchools)

[1] "data.frame"

To inspect the structure of your dataset, you can use str():

str(CASchools)

'data.frame': 420 obs. of 14 variables:

$ district : chr "75119" "61499" "61549" "61457"

$ school : chr "Sunol Glen Unified" "Manzanita Elementary" "Thermalito Union Elementar:
$ county : Factor w/ 45 levels "Alameda","Butte",..: 1 2 2 2 2 6 29 11 6 25 ...
$ grades : Factor w/ 2 levels "KK-06","KK-08": 2 222222221

$ students : num 195 240 1550 243 1335 ...

$ teachers :num 10.9 11.1 82.9 14 71.5 ...

$ calworks :num 0.51 15.42 55.03 36.48 33.11

$ lunch :num 2.04 47.92 76.32 77.05 78.43 ...

$ computer : num 67 101 169 85 171 25 28 66 35 0 ...

$ expenditure: num 6385 5099 5502 7102 5236 ...

$ income : num 22.69 9.82 8.98 8.98 9.08 ...

$ english :num O 4.58 30 0 13.86 ...

$ read : num 692 660 636 652 642 ...

$ math : num 690 662 651 644 640 ...

The dataset contains variables of different types: chr for character/text data, Factor for
categorical data, and num for numeric data.

The variable students contains the total number of students enrolled in a school. It
is the fifth variable in the dataset. To access the variable as a vector, you can type
CASchools[,5] (the fifth column in your data matrix), CASchools[, "students"], or simply
CASchools$students.

16



Subsetting and Manipulation

If you want to select the variables students and teachers, you can type CASchools[,c("students",
"teachers")]. We can define our own dataframe mydata that contains a selection of vari-
ables:

mydata = CASchools[,c("students", "teachers", "english", "income", "math", "read")]
head (mydata)
students teachers english income math read
1 195 10.90 0.000000 22.690001 690.0 691.6
2 240 11.15 4.583333 9.824000 661.9 660.5
3 1550 82.90 30.000002 8.978000 650.9 636.3
4 243 14.00 0.000000 8.978000 643.5 651.9
5 1335 71.50 13.857677 9.080333 639.9 641.8
6 137 6.40 12.408759 10.415000 605.4 605.7

The head () function displays the first few rows of a dataset, giving you a quick preview of its
content.

The pipe operator |> efficiently chains commands. It passes the output of one function as the
input to another. For example, mydata |> head() gives the same output as head (mydata).

A convenient alternative to select a subset of variables of your dataframe is the select ()
function from the dplyr package. Let’s chain the select() and head() functions:

library(dplyr)
CASchools |> select(students, teachers, english, income, math, read) |> head()

students teachers english income math read
195 10.90 0.000000 22.690001 690.0 691.6
240 11.15 4.583333 9.824000 661.9 5
1550 82.90 30.000002 8.978000 650.9 3
243 14.00 0.000000 8.978000 643.5 651.9
1335 71.50 13.857677 9.080333 639.9 8
137 6.40 12.408759 10.415000 605.4 7

O O WN -

Piping in R makes code more readable by allowing you to read operations from left to right
in a natural order, rather than nesting functions inside each other from the inside out.

We can easily add new variables to our dataframe, for instance, the student-teacher ratio (the
total number of students per teacher) and the average test score (average of the math and
reading scores):

17



# compute student-teacher ratio and append it to mydata
mydata$STR = mydata$students/mydata$teachers
# compute test score and append it to mydata
mydata$score = (mydata$read + mydata$math)/2

The variable english indicates the proportion of students whose first language is not English
and who may need additional support. We might be interested in the dummy variable HiEL,
which indicates whether the proportion of English learners is above 10 percent or not:

# append HiEL to mydata
mydata$HiEL = (mydata$english >= 10) |> as.numeric()

Note that mydata$english >= 10 is a logical expression with either TRUE or FALSE values.
The command as.numeric() creates a dummy variable by translating TRUE to 1 and FALSE
to 0.

Plotting
Scatterplots provide further insights:

plot(score ~ STR, data = mydata)

o
O_
N~
o 3 ©
g © o
n
o
N_
©
I
26
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# Set up a plotting area with two plots side by side

par (mfrow = c(1,2))

# Scatterplots of score vs. income and score vs. english
plot(score ~ income, data = mydata)

plot(score ~ english, data = mydata)

o o
o o
~ ~
* 2 * 2
3 © 3 ©
n n
o o
N N
O O
1T 1 T 1
10 30 50 0 20 40 60 80
income english

The option par(mfrow = c(1,2)) allows us to display multiple plots side by side. Try what
happens if you replace c(1,2) with c(2,1).

1.4 Importing Data

The internet serves as a vast repository for data in various formats, with csv (comma-separated
values), x1sx (Microsoft Excel spreadsheets), and txt (text files) being the most commonly
used.

R supports various functions for different data formats:

e read.csv() for reading comma-separated values

e read.csv2() for semicolon-separated values (adopting the German data convention of
using the comma as the decimal mark)

e read.table() for whitespace-separated files

o read_excel() for Microsoft Excel files (requires the readxl package)

o read_stata() for STATA files (requires the haven package)
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CPS Dataset

Let’s import the CPS dataset from Bruce Hansen’s textbook Fconometrics.

The Current Population Survey (CPS) is a monthly survey conducted by the U.S. Census
Bureau for the Bureau of Labor Statistics, primarily used to measure the labor force status of
the U.S. population.

e Dataset: cpsO9mar.txt
e Description: c¢ps09mar description.pdf

url = "https://users.ssc.wisc.edu/~bhansen/econometrics/cpsO9mar.txt"
varnames = c("age", "female", "hisp", "education", "earnings", "hours",
"week", "union", "uncov", "region", "race", "marital")

cps = read.table(url, col.names = varnames)

Let’s create additional variables:

# wage per hour

cps$wage = cps$earnings/(cps$week * cps$hours)

# years since graduation

cps$experience = (cps$age - cps$education - 6)

# married dummy

cps$married = cps$marital %inj, c(1, 2) [> as.numeric()

# Black dummy

cps$Black = (cps$race %inj c(2, 6, 10, 11, 12, 15, 16, 19)) |> as.numeric()

# Asian dummy

cps$Asian = (cps$race %inj, c(4, 8, 11, 13, 14, 16, 17, 18, 19)) [> as.numeric()

We will need the CPS dataset later, so it is a good idea to save the dataset to your computer:

write.csv(cps, "cps.csv", row.names = FALSE)

This command saves the dataset to a file named cps.csv in your current working directory
(you can check yours by running getwd()). It’s best practice to use an R Project for your
course work so that all files (data, scripts, outputs) are stored in a consistent and organized
folder structure.

To read the data back into R later, just type cps = read.csv("cps.csv").
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1.5 Data Types

The most common types of economic data are:

¢ Cross-sectional data: Data collected on many entities at a single point in time without
regard to temporal changes.

o« Time series data: Data on a single entity collected over multiple time periods.

o Panel data: Data collected on multiple entities over multiple time points, combining
features of both cross-sectional and time series data.

Cross-Sectional Data

The cps dataset is an example of a cross-sectional dataset, as it contains observations from
various individuals at a single point in time.

str(cps)

'data.frame': 50742 obs. of 20 variables:

$ age : int 52 38 38 41 42 66 51 49 33 52 ...
$ female :int 0001010101 ...

$ hisp :int 0000000000 ...

$ education : int 12 18 14 13 13 13 16 16 16 14 ...
$ earnings : int 146000 50000 32000 47000 161525 33000 37000 37000 80000 32000 ...
$ hours : int 45 45 40 40 50 40 44 44 40 40 ...
$ week : int 52 52 51 52 52 52 52 52 52 52 ...
$ union :int 0000100000 .

$ uncov :int 00000000O0O .

$ region sint 1111111111,

$ race :dint 1111111111,

$ marital :dint 1111151111 ...

$ experience: num 34 14 18 22 23 47 29 27 11 32 ...
$ wage : num 62.4 21.4 15.7 22.6 62.1

$ married :num 1111101111 ...

$ college :dint 0110001111

$ black :int 0000000000

$ asian :int 00 000000O00O0

$ Black :num 0 0 0000O0O0O00O

$ Asian :num 0000000000
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Time Series

My repository TeachData contains several recent time series datasets. For instance, we can
examine the annual growth rate of nominal quarterly GDP of Germany:

data("gdpgr", package="TeachData")

plot(gdpgr)
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Panel Data

The dataset Fatalities is an example of a panel dataset. It contains variables related to
traffic fatalities across different states (cross-sectional dimension) and years (time dimension)
in the United States:

data(Fatalities, package = "AER")

str(Fatalities)

'data.frame': 336 obs. of 34 variables:

$ state : Factor w/ 48 levels "al","az","ar",..: 11 11111222.
$ year : Factor w/ 7 levels "1982","1983",..: 1 23 456 7 12 3 .
$ spirits :num 1.37 1.36 1.32 1.28 1.23 ...

$ unemp :num 14.4 13.7 11.1 8.9 9.8 ...

$ income : num 10544 10733 11109 11333 11662 ...

$ emppop : num b50.7 52.1 54.2 55.3 56.5 ...

$ beertax :num 1.54 1.79 1.71 1.65 1.61 ...

$ baptist : num 30.4 30.3 30.3 30.3 30.3 ...

$ mormon :num 0.328 0.343 0.359 0.376 0.393 ...
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$ drinkage : num 19 19 19 19.7 21

$ dry : num 25 23 24 23.6 23.5 ...

$ youngdrivers: num 0.212 0.211 0.211 0.211 0.213 ...

$ miles : num 7234 7836 8263 8727 8953 ...

$ breath : Factor w/ 2 levels "no","yes": 1111111111 ...
$ jail : Factor w/ 2 levels "mo","yes": 1111111222 ...
$ service : Factor w/ 2 levels "no","yes": 1111111222 ...
$ fatal : int 839 930 932 882 1081 1110 1023 724 675 869 ...

$ nfatal : int 146 154 165 146 172 181 139 131 112 149 ...

$ sfatal : int 99 98 94 98 119 114 89 76 60 81 ...

$ fatallb17 : int 53 71 49 66 82 94 66 40 40 51

$ nfatallbl7 : int 987 910118778 ...

$ fatall820 : int 99 108 103 100 120 127 105 81 83 118 ...

$ nfatall820 : int 34 26 25 23 23 31 24 16 19 34 ...

$ fatal2124 : int 120 124 118 114 119 138 123 96 80 123 ...

$ nfatal2124 : int 32 35 34 45 29 30 25 36 17 33 ...

$ afatal : num 309 342 305 277 361

$ pop : num 3942002 3960008 3988992 4021008 4049994 ...

$ poplb517 : num 209000 202000 197000 195000 204000 ...

$ pop1820 : num 2215563 219125 216724 214349 212000 ...

$ pop2124 : num 290000 290000 288000 284000 263000 ...

$ milestot : num 28516 31032 32961 35091 36259 ...

$ unempus : num 9.7 9.6 7.5 7.2 7 ...

$ emppopus : num 57.8 57.9 59.5 60.1 60.7 ...

$ gsp : num -0.0221 0.0466 0.0628 0.0275 0.0321

1.6 Statistical Framework

Data is usually the result of a random experiment. The gender of the next person you meet, the
daily fluctuation of a stock price, the monthly music streams of your favorite artist, the annual
number of pizzas consumed - all of this information involves a certain amount of randomness.

Random Variables

In statistical sciences, we interpret a univariate dataset Yi,...,Y, as a sequence of random
variables. Similarly, a multivariate dataset X,,..., X, is viewed as a sequence of random
vectors.

Cross-sectional data is typically characterized by an identical distribution across its indi-
vidual observations, meaning each element in the sequence Y7,...,Y, or Xy,..., X, has the
same distribution function.
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For example, if Y},...,Y, represent the wage levels of different individuals in Germany, each
Y, is drawn from the same distribution F', which in this context is the wage distribution across
the country.

Similarly, if X, ..., X, are bivariate random variables containing wages and years of education
for individuals, each X, follows the same bivariate distribution GG, which is the joint distribution
of wages and education levels.

Probability Theory
A primary goal of econometric methods and statistical inference is to gain insights about
features of these true but unknown population distributions F' or GG using the available data.

Thus, a solid knowledge of probability theory is essential for econometric modeling. For a com-
prehensive recap on probability theory for econometricians, consider the following refresher:

@ Probability Theory for Econometricians:

probability.svenotto.com/
Section 2 of the Stock and Watson book also provides a review of the most important

concepts.

Random Sampling

Econometric methods require specific assumptions about sampling processes. The ideal ap-
proach is simple random sampling, where each individual has an equal chance of being selected
independently. This produces observations that are both identically distributed and indepen-
dently drawn - what we call independent and identically distributed (i.i.d.) random
variables or simply a random sample.

i.i.d. Sample

An independently and identically distributed (i.i.d.) sample, or random sample, consists of a
sequence of k-variate random vectors X, ..., X, that:

1. Have the same probability distribution F' (identically distributed), where F(a) = P(X,; <
a) for any i and a € R¥

2. Are mutually independent, meaning their joint cumulative distribution function
Fy . x, (ay...a,)=PX; <a,,..,X, <a,) factorizes completely:

Fx,..x,(@..a,) = F(a;)- Fay) - ... - F(a,)

for all @y, ...,a, € RF.
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F is called the population distribution or data-generating process (DGP).

An equivalent representation of the i.i.d. property can be obtained using the conditional
distribution function Fy x o (a;) = P(X; <a;|X; =a;,j#i). Then, X;,..., X, areiid.
if the conditional distributions equal the marginal distributions:

Fx,x,-a,(@;) = Fx,(a;) = F(a;) forallianda,..,a, €R".

@ For more details on independence see Probability Tutorial Part 1

The Current Population Survey (CPS) involves random interviews with individuals from the
U.S. labor force and may be regarded as an i.i.d. sample. Methods that commonly yield i.i.d.
sampling for economic cross-sectional datasets include:

e Survey sampling with appropriate randomization

¢ Administrative records with random selection

e Direct observation of randomly chosen subjects

e Web scraping with randomized targets

o Field or laboratory experiments with random assignment

In a random sample there is no inherent ordering that would introduce systematic dependencies
between observations. If individuals ¢ and j are truly randomly selected, then the observations
X, and X are independent random vectors. The order in which the observations appear in
the dataset is arbitrary and carries no information.

Clustered Sampling

While simple random sampling provides a clean theoretical foundation, real-world data often
exhibits clustering - where observations are naturally grouped or nested within larger units.
This clustering leads to dependencies that violate the i.i.d. assumption in two important
contexts:

In cross-sectional studies, clustering occurs when we collect data on individual units that belong
to distinct groups. Consider a study on student achievement where researchers randomly select
schools, then collect data from all students within those schools:

o Although schools might be selected independently, observations at the student level are
dependent

o Students within the same school share common environments (facilities, resources, ad-
ministration)

25


https://probability.svenotto.com/part1_distribution.html

¢ They experience similar teaching quality and educational policies and they influence each
other through peer effects and social interactions

For instance, if School A has an exceptional mathematics department, all students from that
school may perform better in math tests compared to students with similar abilities in other
schools.

Statistically, if Y}, represents the test score of student k in school 4:

o observations Y;; and Y}, are independent for i # j (different students in different schools),
o observations Y;, and Y;are dependent (different students in the same school).

Panel Data Clustering

Panel data, by its very nature, introduces clustering across both cross-sectional units and time.
Recall the Fatalities dataset which tracks traffic fatalities across different states and years.

For panel data with n states observed over T' years, we can represent the structure as:

o The vectors (Y;q,...,Y,) are i.i.d. across units ¢ = 1,...,n (different states’ time series
are independently sampled)

o But within each state i, the observations Y}, ..., Y, are generally not independent from
each other

This structure reflects two important aspects of panel data:

e Unit independence: The complete time series for each state can be treated as an
independent draw from the population distribution of all possible state time series

e Temporal dependence: Within each state, observations across different years are
dependent due to persistent state-specific factors like road infrastructure, driving culture,
and enforcement practices

For instance, if California implements effective traffic safety measures, the effects will likely
persist across multiple years, creating a temporal correlation in that state’s fatality rates. Simi-
larly, economic downturns or changes in federal transportation policy may create dependencies
across all states in particular years.

Time Dependence
Time series and panel data are intrinsically not independent due to the sequential nature of

the observations. We usually expect observations close in time to be strongly dependent and
observations at greater temporal distances to be less dependent.
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Consider the quarterly GDP growth rates for Germany in the dataset gdpgr. Unlike cross-
sectional data where the ordering of observations is arbitrary, the chronological ordering in
time series carries crucial information about the dependency structure.

A simple way to formalize this temporal dependence is using an autoregression. If Y, denotes
the GDP growth at time ¢, a first-order autoregressive representation can be written as:

Y, =d¢p+ 1Y, +&
where ¢, is a constant, ¢, captures the persistence from one period to the next, and ¢, is a
random disturbance.

If ¢, # 0, the current value Y, directly depends on its previous value Y, ;. For GDP growth,
¢, is typically positive, indicating that strong growth in one quarter predicts stronger growth
in the next quarter.

This time dependence means that the conditional distribution function differs from the
marginal distribution:

Fth,l,x,Q,..‘(yth‘/—b Yoy ) F FYt (Y:)

In contrast to the i.id. case, where Fyy. (y;ly;) = Fy (y;) for i # j, time series observations
violate this independence property, making the i.i.d. assumption inappropriate for time series
analysis.

1.7 R-codes

metrics-secO1.R
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2 Summary Statistics

In statistics, a univariate dataset Y;,...,Y,, or a multivariate dataset X, ..., X,, is often called
a sample. It typically represents observations collected from a larger population. The sample
distribution indicates how the sample values are distributed across possible outcomes.

Summary statistics, such as the sample mean and sample variance, provide a concise rep-
resentation of key characteristics of the sample distribution. These summary statistics are
related to the sample moments of a dataset.

2.1 Sample moments

The r-th sample moment about the origin (also called the r-th raw moment) is defined as

Mean

For example, the first sample moment (r = 1) is the sample mean (arithmetic mean):

Y,.

(2

?:

S|

n
=1

The sample mean is the most common measure of central tendency. In i.i.d. samples, it
converges in probability to the expected value as sample size grows (law of large numbers).
This makes it a consistent estimator for the population mean:

Yi,u:E[Y] as n — 0.

To compute the sample mean of a vector Y in R, use mean (Y) or alternatively sum(Y)/length(Y).
The r-th sample moment can be calculated with mean(Y~"r).
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2.2 Central sample moments

The r-th central sample moment is the average of the r-th powers of the deviations from

the sample mean:
1< —
Y (YY)
=

Variance

For example, the second central moment (r = 2) is the sample variance:

2
y =

QD

n — — 2
Y-V =Y2-Y .
=1

S

The sample variance measures the spread or dispersion of the data around the sample mean.
It is a consistent estimator for the population variance

o = Var(Y) = E[(Y — E[Y))?] = E[Y?] — E[Y]?

if the sample is i.i.d.

Standard Deviation

The sample standard deviation is the square root of the sample variance:
1 & — o
N S R s
i=1

It quantifies the typical deviation of data points from the sample mean in the original units of
measurement. It is a consistent estimator for the population standard deviation

sd(Y) =+/Var(Y).

2.3 Adjustments

Degrees of Freedom

When computing the sample mean Y, we have n degrees of freedom because all data points
Y, ..., Y, can vary freely.
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When computing variances, we take the sample mean of the squared deviations
(Yl - ?)2’ ) (Yn - ?)2

These elements cannot vary freely because Y is computed from the same sample and implies
the constraint

1 & —
E;(Y;—Y):o.

This means that the deviations are connected by this equation and are not all free to vary.
Knowing the first n — 1 of the deviations determines the last one:

Y, V)= -7

1=

Therefore, only n — 1 deviations can vary freely, which results in n — 1 degrees of freedom for
the sample variance.

Adjusted Sample Variance

Because Z:L:l(yz —Y)? effectively contains only n — 1 freely varying summands, it is common
to account for this fact. The adjusted sample variance uses n — 1 in the denominator:

1 -
f= >

The adjusted sample variance relates to the unadjusted sample variance as:

n
~2
0.

n—17Y

2
SY_

The adjusted sample standard deviation is:

1 — n
= Y, —Y)2 =,/ Gy

To compute the sample variance and sample standard deviation of a vector Y in R, use
mean(Y~2)-mean(Y) "2 and sqrt(mean(Y~2)-mean(Y)~2), respectively. The built-in func-
tions var(Y) and sd(Y) compute their adjusted versions.

Let’s compute the sample means, sample variances, and adjusted sample variances of some
variables from the cps dataset.

30



cps = read.csv("cps.csv")
exper = cps$experience
wage = cps$wage

edu = cps$education

fem = cps$female

## Sample mean
c(mean(exper), mean(wage), mean(edu), mean(fem))

[1] 22.2071065 23.9026619 13.9246187 0.4257223

## Sample variance
c(mean (exper~2)- mean(exper) "2, mean(wage 2) - mean(wage) 2,
mean(edu”2) - mean(edu)”2, mean(fem~2) - mean(fem) 2)

[1] 136.1098206 428.9398785  7.5318408  0.2444828

## Adjusted sample variance
c(var(exper), var(wage), var(edu), var(fem))

[1] 136.1125031 428.9483320 7.5319892  0.2444876

While the unadjusted version (using 7 in the denominator) yields a lower variance, it remains
biased in finite samples. In contrast, the adjusted version (using n — 1) eliminates this bias at
the expense of slightly higher variance, illustrating a bias—variance tradeoff. In large samples,
however, the difference becomes negligible and both estimators yield practically the same
results.

2.4 Density estimation
A continuous random variable Y is characterized by a continuously differentiable CDF
F(a) = P(Y <a).

The derivative is known as the probability density function (PDF), defined as

fla) = F'(a).

There are several methods to estimate this density function from sample data.
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Histogram

Histograms offer an intuitive visual representation of the sample distribution of a variable. A
histogram divides the data range into B bins, each of equal width h, and counts the number
of observations n; within each bin. The height of the histogram at a in the j-th bin is

flay =22

a)= .

The histogram is the plot of these heights, displayed as rectangles, with their area normalized
so that the total area equals 1.

par (mfrow = c(2,2))

hist (exper, probability = TRUE)
hist(wage, probability = TRUE)
hist(edu, probability = TRUE)
hist(fem, probability = TRUE)
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Running hist (wage, probability=TRUE) automatically selects a suitable number of bins B.
Note that hist(wage) will plot absolute frequencies instead of relative ones. The shape of a
histogram depends on the choice of B. You can experiment with different values using the
breaks option:

par (mfrow = c(1,2))
hist(wage, probability
hist(wage, probability

3)
300)

TRUE, breaks
TRUE, breaks
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Kernel density estimator

Suppose we want to estimate the wage density at a = 22 and consider the histogram density
estimate with A = 10. It is based on the frequency of observations in the interval [20,30)
which is a skewed window about a = 22.

It seems more sensible to center the window at 22, for example [17,27) instead of [20,30). It
also seems sensible to give more weight to observations close to 22 and less to those at the
edge of the window.

This idea leads to the kernel density estimator of f(a), which is a smooth version of the
histogram:

Flor = 25 oK (2

Here, K(u) represents a weighting function known as a kernel function, and h > 0 is the
bandwidth. A common choice for K (u) is the Gaussian kernel:

1
V21

K(u) = ¢(u) = exp(—u®/2).

par (mfrow = c(1,2))
plot(density(wage))
hist(wage, probability=TRUE)
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The density() function in R automatically selects an optimal bandwidth, but it also allows
for manual bandwidth specification via density(wage, bw = your_bandwidth).

2.5 Higher Moments

The r-th standardized sample moment is the central moment normalized by the sample
standard deviation raised to the power of r. It is defined as:

1 &Y, -7\
(5

Skewness

For example, the third standardized sample moment (r = 3) is the sample skewness:

Fe(Y) = 5 S (¥, V)R

~3
noy

The skewness is a measure of asymmetry around the mean. A positive skewness indicates that
the distribution has a longer or heavier tail on the right side (right-skewed), while a negative
skewness indicates a longer or heavier tail on the left side (left-skewed). A perfectly symmetric
distribution, such as the normal distribution, has a skewness of 0.

For i.i.d. samples, the sample skewness is a consistent estimator for the population skewness

E[(Y — E[Y])°]

ske(Y) = Sd(V)?
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To compute the sample skewness in R, use:

mean ((Y-mean(Y))~3)/(mean(Y~2)-mean(Y)~2)~(3/2)

For convenience, you can use the skewness(Y) function from the moments package, which
performs the same calculation.

library(moments)
c(skewness (exper), skewness(wage), skewness(edu), skewness(fem))

[1] 0.1862605 4.3201570 -0.2253251 0.3004446

Wages are right-skewed because a few very rich individuals earn much more than the many
with low to medium incomes. The other variables do not indicate any pronounced skewness.

Kurtosis

The sample kurtosis is the fourth standardized sample moment (r = 4), commonly denoted
as go:

— 1 n —

kur(Y) = — Z<YZ —Y)4

noy- i1

Kurtosis measures the “tailedness” or heaviness of the tails of a distribution and can indicate
the presence of extreme outliers. The reference value of kurtosis is 3, which corresponds to
the kurtosis of a normal distribution. Values greater than 3 suggest heavier tails, while values
less than 3 indicate lighter tails.

For i.i.d. samples, the sample kurtosis is a consistent estimator for the population kurtosis

E[(Y — E[Y])"]
Var(Y)?

kur(Y) =
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To compute the sample kurtosis in R, use:

mean((Y-mean(Y))~4)/(mean((Y-mean(Y))"2)) "2

For convenience, you can use the kurtosis(Y) function from the moments package, which
performs the same calculation.

c(kurtosis(exper), kurtosis(wage), kurtosis(edu), kurtosis(fem))
[1] 2.374758 30.370331 4.498264 1.090267
The variable wage exhibits heavy tails due to a few super-rich outliers in the sample. In

contrast, fem has light tails because there are approximately equal numbers of women and
men.
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The plots display histograms of two standardized datasets (both have a sample mean of 0 and
a sample variance of 1). The left dataset has a normal sample kurtosis (around 3), while the
right dataset has a high sample kurtosis with heavier tails.

Kurtosis not only measures the heaviness of a distribution’s tails but also its peakedness. A
high kurtosis indicates that data are more concentrated around the mean and in the extremes,
meaning that extreme values occur more frequently than they would in a normal distribution.

In contrast, a low kurtosis signifies a flatter peak with lighter tails, suggesting fewer extreme
observations. In finance and risk management, these differences are crucial because they affect
the probability of rare but impactful events.

Some statistical software reports the excess kurtosis, which is defined as kur —3. This shifts
the reference value to 0 (instead of 3), making it easier to interpret: positive values indicate
heavier tails than the normal distribution, while negative values indicate lighter tails. For
example, the normal distribution has an excess kurtosis of 0.
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2.6 Logarithmic Transformations

Right-skewed, heavy-tailed variables are common in real-world datasets, such as income levels,
wealth accumulation, property values, insurance claims, and social media follower counts. A
common transformation to reduce skewness and kurtosis in data is to use the natural loga-
rithm:

par (mfrow = c(2,2))

hist(wage, probability = TRUE, breaks = 20, xlim = c(0,200))
hist(log(wage), probability = TRUE, breaks = 50, xlim = c(-1, 6))
plot(density(wage), xlim = c(0,200))

plot(density(log(wage)), xlim = c(-1, 6))
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c(skewness(log(wage)), kurtosis(log(wage)))

[1] -0.6990539 11.8566367

In econometrics, statistics, and many programming languages including R, log(-) is commonly
used to denote the natural logarithm (base e).

Note: On a pocket calculator, use LN to calculate the natural logarithm log(-) = log_(-). If
you use LOG, you will calculate the logarithm with base 10, i.e., log,,(-), which will give you
a different result. The relationship between these logarithms is log,,(x) = log_(z)/ log,_(10).

2.7 Bivariate Statistics

For a bivariate sample (Y, Z;), ..., (Y,,, Z,), we can compute cross moments that describe the
relationship between the two variables. The (r, s)-th sample cross moment is defined as:

Nr77s 1 - T 78
YZ :@Z;Y"Zi’

The most important cross moment is the (1,1)-th sample cross moment, or simply the first
sample cross moment:

n

vz

i=1

The central sample cross moments are defined as:

YZ =

S

LSV (2 -7

Covariance and Correlation

The (1, 1)-th central sample cross moment leads to the sample covariance:
1< — — = =
Gy g = EZ(Y»—Y)(Zi—Z) -YZ-Y Z.

Similar to the univariate case, we can define the adjusted sample covariance:

LSV -7) ="

i=1

Sy, = Oy 7.
vz = n_10vz
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The sample correlation coefficient is the standardized sample covariance:

Syz _ Z:L:l(Yz—?)(ZZ—Z) _ a'yz
RACARRVO SN SO GO SN O AL

Tyz =

If the sample is i.i.d., both 7y, and sy, are consistent estimators for the population covari-
ance

oy, =Cov(Y,Z)=E[Y — E[Y])(Z — E[Z])].

The adjusted sample covariance sy, is unbiased, while 7y, is biased but has a lower sam-
pling variance. Similarly, the sample correlation coefficient is a consistent estimator for the
population correlation coefficient

B B Cou(Y,Z)
pyz = Corr(Y, 2) = VVar(Y)\Var(Z)

To compute these quantities for a bivariate sample collected in the vectors Y and Z, use
cov(Y,Z) for the adjusted sample covariance and cor(Y,Z) for the sample correlation.

cov(wage, edu)

[1] 21.82614

cor(wage, edu)

[1] 0.3839897

2.8 Moment Matrices

Consider a multivariate dataset X, ..., X,,, such as the following subset of the cps dataset:

dat = data.frame(wage, edu, fem)
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Mean Vector

The sample mean vector X contains the sample means of the k variables and is defined

as
1 &
X:EZXi.

i=1

For i.i.d. samples, the sample mean vector is a consistent estimator for the population mean
vector E[X].

colMeans (dat)

wage edu fem
23.9026619 13.9246187 0.4257223

Covariance Matrix

The sample covariance matrix Y is the k x k matrix given by

—
3
|

S=) (X, - X)X, - X).

Its elements 7, ; represent the pairwise sample covariance between variables i and I:

- 1 & — [ .
Opi = — Z(Xih — X)Xy — X)), X = n ZXM'
i—1

N

The adjusted sample covariance matrix S is defined as

1

S:n—l

> (X, X)X, - X)

i=1

Its elements s, ; are the adjusted sample covariances, with main diagonal elements 57 =
sp, 1, being the adjusted sample variances:

1 — —
Z(Xih — X)) (X — X))

i=1

Sp=——
hl =

If the sample is i.i.d., both ¥ and S are consistent estimators for the population covariance
matrix

S = Var(X) = E[(X — E[X]))(X — E[X])].

42



The adjusted covariance matrix S is unbiased, while ¥ is biased but has lower sampling
variance.

## Adjusted sample covariance matriz
cov(dat)

wage edu fem
wage 428.948332 21.82614057 -1.66314777
edu 21.826141 7.53198925 0.06037303
fem -1.663148 0.06037303 0.24448764

Correlation Matrix

The sample correlation coefficient between the variables h and [ is the standardized sample

_ Snil Z?:1<Xih_X7h)<Xil - X)) _ Ol

ST (X = X T (X = X2 T

covariance:

These coefficients form the sample correlation matrix R, expressed as:
R=D1'SD™!,

where D is the diagonal matrix of adjusted sample standard deviations:

s; 0 ... 0
D = diag(sy,...,s;) = 0 52 0
0 0 .. s

The matrices ’E\, S, and R are symmetric.

cor (dat)

wage edu fem
wage 1.0000000 0.38398973 -0.16240519
edu 0.3839897 1.00000000 0.04448972
fem -0.1624052 0.04448972 1.00000000

We find a strong positive correlation between wage and edu, a substantial negative correlation
between wage and fem, and a negligible correlation between edu and fem.
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2.9 R-codes

metrics-sec02.R

44


https://metrics.svenotto.com/metrics-sec02.R

Part |l

Linear Regression
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3 Least Squares

This section introduces the least squares method, focusing exclusively on its geometric and com-
putational aspects as an optimization problem that minimizes the sum of squared deviations
between observed and fitted values. The statistical properties of least squares, including the
formal linear model framework, hypothesis testing, and estimator properties, will be covered
in the next sections.

3.1 Regression Fundamentals

Regression Problem

The idea of regression analysis is to approximate a univariate dependent variable Y, (also

known as the regressand or response variable) as a function of the k-variate vector of the
independent variables X, (also known as regressors or predictor variables). The relationship
is formulated as

Y, ~ f(X;), i=1,..,n,

where Y;,...,Y, is a univariate dataset for the dependent variable and X, ..., X,, a k-variate
dataset for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of Y:

min Y . — )2,
nit ;m F(X))

Linear Regression
If the regression function f(X,) is linear in X, i.e.,
f(X,)=b +byX;0+ ... + b, X, = X/b, beRF
the minimization problem is known as the ordinary least squares (OLS) problem. The

coefficient vector has k entries:
b == (b]‘7 b27 cee 7bk))/'
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To avoid the unrealistic constraint of the regression line passing through the origin, a constant
term (intercept) is always included in X, typically as the first regressor:

XZ - (1,X7/2, ees ’Xik>/'

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining different variables), and
logarithmic transformations.

3.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector b € R¥ is defined as

n n

S,(b) => (Y, — f(X,)? =D (¥, — Xb)?
i=1 =1

It is minimized by the least squares coefficient vector

n

B = argmin, g, Z(Yl — X'b)%

i=1

Least squares coefficients

If the k x k matrix (Z?Zl X, X)) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

-1 n

= (ixgq) Y XY,
i=1 i=1

The fitted values or predicted values are
Y, =B+ ByXpg+ o+ B Xy = X\B, i=1,..,n.
The residuals are the difference between observed and fitted values:

=Y, -Y, =Y, - X8, i=1,.,n.
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3.3 Regression Plots

Line Fitting

Let’s examine the linear relationship between average test scores and the student-teacher
ratio:

data(CASchools, package = "AER")

CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math) /2
fitl = Im(score ~ STR, data = CASchools)
fiti$coefficients

(Intercept) STR
698.932949  -2.279808

We have
- 698.9
B= (—%&28)'

698.9 — 2.28 STR.

The fitted regression line is

We can plot the regression line over a scatter plot of the data:

par (mfrow = c(1,2), cex=0.8)
plot(score ~ STR, data = CASchools)
abline(fitl, col="blue")

plot (CASchools$STR, fitl$residuals)
abline(0, 0, col="blue")

o
o o
N~ <
8 <
©o 9 3
s 8 2 o
o &
bu!
o =
A o
© ¥
14 16 18 20 22 24 26 14 16 18 20 22 24 26
STR CASchools$STR
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Multidimensional Visualizations

Let’s include the percentage of english learners as an additional regressor:

fit2= 1lm(score ~ STR + english, data = CASchools)
fit2$coefficients

(Intercept) STR english
686.0322445 -1.1012956 -0.6497768

A 3D plot provides a visual representation of the resulting regression line (surface):

OLS Regression Surface

CASchools$score
606264666800020

STR

Adding the additional predictor income gives a regression specification with dimensions beyond
visual representation:

fit3 = Im(score ~ STR + english + income, data = CASchools)
fit3$coefficients

(Intercept) STR english income
640.31549821 -0.06877542 -0.48826683 1.49451661

The fitted regression line now includes three predictors and four coefficients:

640.3 — 0.07 STR — 0.49 english + 1.49 income

For specifications with multiple regressors, fitted values and residuals can still be visualized:
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par(mfrow = c(1,2), cex=0.8)
plot(fit3$fitted.values)

plot(fit3$residuals)
o o
8 R o
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Index Index

The pattern of fitted values arises because the observations in the CASchools dataset are sorted
in ascending order by test score.

3.4 Matrix notation

OLS Formula

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector Y and the regressor matrix (design matrix) X as
follows:

Y, X
Y=|72|, X=|"2%|=]: :
v % 1 X, . X,

Note that " X, X;=X'X and ). XY, =X'Y.

The least squares coefficient vector becomes

1 n

B= (anxixg) S XY, = (X'X)IXY.
=1 =1

The vector of fitted values can be computed as follows:

Y,
Y=|:|=XxB=XX'X)XY.

Y,

n
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Residuals

The vector of residuals is given by

ul P .
i=|:|=Y-Y=Y-XB

Up,

An important property of the residual vector is: X’u = 0. To see that this property holds,
let’s rearrange the OLS formula:

B=(X'X)'XY < XXB=XY.
The dependent dependent variable vector can be decomposed into the vector of fitted values
and the residual vector: R
Y =XB+u.
Substituting this into the OLS formula from above gives:
X'XB=X(XB+1) < 0=X4u
This property has a geometric interpretation: it means the residuals are orthogonal to all

regressors. This makes sense because if there were any linear relationship left between the
residuals and the regressors, we could have captured it in our model to improve the fit.

3.5 Goodness of Fit

Analysis of Variance

The orthogonality property of the residual vector can be written in a more detailed way as

follows: —
;izl Wi 0
X' = Elﬂfh% -1 (3.1)
Zyzl szaz 0

In particular, the sample mean of the residuals is zero:
1<~
— u;, = 0.
n Z !

als:
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The sample variance of the dependent variable is

n

~2
O-Y_

SHE

i—1
and the sample variance of the fitted values is

Yy I s =
n- s e

N
The three sample variances are connected through the analysis of variance formula:
02 = &; + 2.
Hence, the larger the proportion of the explained sample variance, the better the fit of the

OLS regression.

R-squared

The analysis of variance formula motivates the definition of the R-squared coefficient:

=

R2:1—§:1— Zﬁzlagi :Zzl:l(yvz_z>2
O-%/ Zi:l(Y; - Y)2 Zizl(y; - Y>2

The R-squared describes the proportion of sample variation in Y explained by Y. We have
0<R*<1.

In a regression of Y, on a single regressor Z, with intercept (simple linear regression), the

R-squared is equal to the squared sample correlation coefficient of Y, and Z;.

An R-squared of 0 indicates no sample variation in Y (a flat regression line/surface), whereas
a value of 1 indicates no variation in u, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in Y that is not captured
by the regressors X linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If k = n, we have R? = 1 even if none of the regressors has an actual influence on the dependent
variable.
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Adjusted R-squared
Recall that the deviations (Y,—Y) cannot vary freely because they are subject to the constraint
E?zl(Yi —Y), which is why we lose 1 degree of freedom in the sample variance of Y.

For the sample variance of %, we loose k degrees of freedom because the residuals are subject to
the constraints from Equation 3.1. The adjusted sample variance of the residuals is therefore

defined as:
1 n 5

By incorporating adjusted versions in the R-squared definition, we penalize regression specifi-
cations with large k. The adjusted R-squared is

1 noo~2
—2 — 54_ (7 S
R =1-—nhe=el 1

E%TEZZﬂ(yz__YﬂQ S

ISE]

S

HN

~ND

The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

3.6 Regression Table

The modelsummary () function can be used to produce comparison tables of regression out-
puts:

library(modelsummary)
mymodels = list(fitl, fit2, fit3)
modelsummary (mymodels,
statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

Model (3) explains the most variation in test scores and provides the best fit to the data, as
indicated by the highest R? and the lowest residual standard error.

In model (1), schools with one more student per class are predicted to have a 2.28-point lower
test score. This effect decreases to 1.1 points in model (2), after accounting for the percentage
of English learners, and drops further to just 0.07 points in model (3), once income is also
included.
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(1) (2) (3)
(Intercept) 698.933 686.032 640.315

STR —2.280 —1.101 —0.069
english —0.650 —0.488
income 1.495
Num.Obs. 420 420 420
R2 0.051 0.426 0.707
R2 Adj. 0.049 0.424 0.705
RMSE 18.54 14.41 10.30

The Root Mean Squared Error (RMSE) is the squareroot of the mean squared error of
the residuals:

While the R-squared increases in the number of regressors, the RMSE decreases.

To give deeper meaning to these results and understand their interpretation within a broader
context, we turn to a formal probabilistic model framework in the next section.

3.7 When OLS Fails

Too many regressors
OLS should be considered for regression problems with £ << n (small k£ and large n). When

the number of predictors k approaches or equals the number of observations n, we run into the
problem of overfitting. Specifically, at k = n, the regression line will perfectly fit the data.
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OLS with k=n=2 OLS with k=n=3
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If K = n > 4, we can no longer visualize the OLS regression line in the 3D space, but the
problem of a perfect fit is still present. If k > n, there exists no unique OLS solution because
X’X is not invertible. Regression problems with & ~ n or k > n are called high-dimensional
regressions.

Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix X’X.
As discussed above, a necessary condition is that & < n.

Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).

Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(X) < k. It implies rank(X’X) < k, so that the matrix is singular
and B cannot be computed.

Near multicollinearity occurs when two columns of X have a sample correlation very close
to 1 or -1. Then, (X’'X) is “near singular”, its eigenvalues are very small, and (X'X)~!
becomes very large, causing numerical problems.

If k¥ < n and multicollinearity is present, it means that at least one regressor is redundant and
can be dropped.

95



Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
consider the cps data and add a dummy variable for non-married individuals:

cps = read.csv("cps.csv")
cps$nonmarried = 1-cps$married
fit4 = lm(wage ~ married + nonmarried, data = cps)

fit4$coefficients
(Intercept) married nonmarried
19.338695 6.997155 NA

The coefficient for nonmarried is NA. We fell into the dummy variable trap!

The dummy variables married and nonmarried are collinear with the intercept variable be-
cause married + nonmarried = 1, which leads to a singular matrix X’X and therefore to
perfect multicollinearity.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Another solution would be to remove the intercept from
the model, which can be done by adding -1 to the model formula:

fits = Im(wage ~ married + nonmarried - 1, data = cps)
fitb$coefficients

married nonmarried
26.33585 19.33869

3.8 R-codes

metrics-sec03.R
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4 Linear Model

4.1 Conditional Expectation

In econometrics, we often analyze how a variable of interest (like wages) varies systematically
with other variables (like education or experience). The conditional expectation function
(CEF) provides a powerful framework for describing these relationships.

The conditional expectation of Y given X is the expected value of Y for each possible value
of X. For a continuous random variable Y we have

E[Y|X = a] = / y Fyix (i) dy

where fyx(y|z) is the conditional density of Y given X = z.

The CEF maps values of X to corresponding conditional means of Y. As a function of the
random variable X, the CEF itself is a random variable:

E[Y|X]=m(X), where m(z)= E[Y|X = z]

@ For a comprehensive treatment of conditional expectations see Probability Tutorial
Part 2

Examples

Let’s examine this concept using wage and education as examples. When X is discrete (such
as years of education), we can analyze how wage distributions change across education levels
by comparing their conditional distributions:

Notice how the conditional distributions shift rightward as education increases, indicating
higher average wages with higher education.

From these conditional densities, we can compute the expected wage for each education level.
Plotting these conditional expectations gives the CEF:

m(x) = E[wage | edu = x|
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Figure 4.1: Unconditional density f(y) and conditional densities fy|y(y|x) of wage given z
years of education

Since education is discrete, the CEF is defined only at specific values, as shown in the left plot
below:
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Figure 4.2: Conditional expectations of wage given education (left) and experience (right)

When X is continuous (like years of experience), the CEF becomes a smooth function (right
plot). The shape of E[wage|experience] reflects real-world patterns: wages rise quickly early
in careers, then plateau, and may eventually decline near retirement.

The CEF as a Random Variable

It’s important to distinguish between:

e E[Y|X = z]: a number (the conditional mean at a specific value)
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e E[Y|X]: a function of X, which is itself a random variable

For instance, if X = education has the probability mass function:

0.06 if z =10
0.43 ifz =12
0.16 ifz=14
P(X=x)=40.08 ifz=16
024 ifz=18
0.03 ifz=21
0 otherwise

Then E[Y|X] as a random variable has the probability mass function:

0.06 if y=11.68 (when X = 10)
0.43 if y = 14.26 (when X = 12)
0.16 if y = 17.80 (when X = 14)
PEY|X]=y)=40.08 ify=16.84 (when X = 16)
0.24 ify=21.12 (when X = 18)
0.03 if y = 27.05 (when X = 21)

0 otherwise

The CEF assigns to each value of X the expected value of Y given that information.

4.2 CEF Properties

The conditional expectation function has several important properties that make it a funda-
mental tool in econometric analysis.

Law of Iterated Expectations (LIE)
The law of iterated expectations connects conditional and unconditional expectations:

ElY] = E[E[Y]X]]

This means that to compute the overall average of Y, we can first compute the average of Y
within each group defined by X, then average those conditional means using the distribution
of X.
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This is analogous to the law of total probability, where we compute marginal probabilities or
densities as weighted averages of conditional ones:

When X is discrete:
PY=y)=> PY=y|X=2)-P(X=ux)

When X is continuous:

fy(y) = / Frix W] z) - fx(a)da

Similarly, the LIE states:

When X is discrete:
EY]=) E[Y|X =z]-P(X =)

When X is continuous: -
BY)= [ EIY|X =] fx(o)ds

Let’s apply this to our wage and education example. With X = education and Y = wage, we
have:

E[Y|X =10] =11.68, P(X =10) = 0.06
E[Y|X =12] =14.26, P(X =12) =043
E[Y|X =14] =17.80, P(X =14)=0.16
E[Y|X =16] = 16.84,  P(X =16) = 0.08
E[Y|X =18] =21.12, P(X =18)=0.24
E[Y|X =21] =27.05, P(X =21)=0.03

The law of iterated expectations gives us:

E[Y]=) E[Y|X =a]-P(X =x)

=11.68-0.06 4+ 14.26 - 0.43 + 17.80 - 0.16

+16.84 - 0.08 + 21.12 - 0.24 + 27.05 - 0.03
=0.7008 4+ 6.1318 4 2.848 + 1.3472 + 5.0688 + 0.8115
=16.91

This unconditional expected wage of 16.91 aligns with what we would calculate from the
unconditional density. The LIE provides us with a powerful way to bridge conditional expec-
tations (within education groups) and the overall unconditional expectation (averaging across
all education levels).
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Conditioning Theorem (CT)

The conditioning theorem (also called the factorization rule) states:

Elg(X)Y | X] = g(X) - E[Y | X]

This means that when taking the conditional expectation of a product where one factor is a
function of the conditioning variable, that factor can be treated as a constant and factored
out. Once we condition on X, the value of g(X) is fixed.

If Y = wage and X = education, then for someone with 16 years of education:

E[16 - wage | edu = 16] = 16 - E[wage | edu = 16]

More generally, if we want to find the expected product of education and wage, conditional on
education:
Eledu - wage | edu] = edu - E[wage | edu]

Best Predictor Property

The conditional expectation E[Y|X] is the best predictor of Y given X in terms of mean
squared error:
BIYIX] = argin BI(Y — g(X))?
of-

This means that among all possible functions of X, the CEF minimizes the expected squared
prediction error. In practical terms, if you want to predict wages based only on education, the
optimal prediction is exactly the conditional mean wage for each education level.

For example, if someone has 18 years of education, our best prediction of their wage (minimiz-
ing expected squared error) is E[wage|education = 18] = 21.12.

No other function of education, whether linear, quadratic, or more complex, can yield a better
prediction in terms of expected squared error than the CEF itself.

Independence Implications
If Y and X are independent, then:
E[Y[X] = E[Y]
When variables are independent, knowing X provides no information about Y, so the condi-

tional expectation equals the unconditional expectation. The CEF becomes a constant function
that doesn’t vary with X.
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In our wage example, if education and wage were completely independent, the CEF would be a
horizontal line at the overall average wage of 16.91. Each conditional density fyy(y[z) would
be identical to the unconditional density f(y), and the conditional means would all equal the
unconditional mean.

The fact that our CEF for wage given education has a positive slope indicates that these
variables are not independent—higher education is associated with higher expected wages.

4.3 Linear Model Specification

Prediction Error

Consider a sample {(Y;,X,)}" ;. We have established that the conditional expectation
function (CEF) E[Y;|X,] is the best predictor of Y; given X, minimizing the mean squared
prediction error.

This leads to the following prediction error:

u; =Y; — B[Y;|X;]
By construction, this error has a conditional mean of zero:

Elu,|X;] =0

This zero conditional mean property follows directly from the law of iterated expectations:

Elu;|X;] = E[Y; — E[Y;|X,] | X]
=LY, | X;] - E[E]Y;|X;] | X ]
:E[Yi ‘Xi]_E[}/i ’Xi]zo

We can thus always decompose the outcome as:

Y, = B[Y}|X;] + v,

where Elu,;|X;] = 0. This equation is not yet a regression model. It’s simply the decomposition
of Y, into its conditional expectation and an unpredictable component.
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Linear Regression Model

To move to a regression framework, we impose a structural assumption about the form of the
CEF. The key assumption of the linear regression model is that the conditional expectation
is a linear function of the regressors:

ElY; [ X,] = XiB

Substituting this into our decomposition yields the linear regression equation:

Y, = X+, (4.1)

with the crucial assumption:
Elu; | X;] =0 (4.2)

Exogeneity

This assumption (Equation 9.3) is called exogeneity or mean independence. It ensures
that the linear function X B correctly captures the conditional mean of Y;.

Under the linear regression equation (Equation 4.1) we have the following equivalence:

ElY; | X;]=X8 < E[|X]=0

Therefore, the linear regression model in its most general form is characterized by the two con-
ditions: linear regression equation (Equation 4.1) and exogenous regressors (Equation 9.3).

For example, in a wage regression, exogeneity means that the expected wage conditional on
education and experience is exactly captured by the linear combination of these variables. No
systematic pattern remains in the error term.

Model Misspecification

If the true conditional expectation function is nonlinear (e.g., if wages increase with education
at a diminishing rate), then E[Y; | X,] # X8, and the model is misspecified. In such cases,
the linear model provides the best linear approximation to the true CEF, but systematic
patterns remain in the error term.

It’s important to note that u; may still be statistically dependent on X, in ways other than its
mean. For example, the variance of u; may depend on X in the case of heteroskedasticity.
For instance, wage dispersion might increase with education level. The assumption Elu; |
X,] = 0 requires only that the conditional mean of the error is zero, not that the error is
completely independent of the regressors.
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4.4 Population Regression Coefficient

Under the linear model
Y, :X;:B+uiv Elu,; | X;] =0,

we are interested in the population regression coefficient 8, which indicates how the
conditional mean of Y; varies linearly with the regressors in X,.

Moment Condition

A key implication of the exogeneity condition E[u,; | X,;] = 0 is that the regressors are mean
uncorrelated with the error term:

This can be derived from the exogeneity condition using the law of iterated expectations:

EXu;] = EEXu, | X,]]=EX, Elu; | X;]] = E[X,;-0] =0

Substituting the linear model into the mean uncorrelatedness condition gives a moment con-
dition that identifies gB:

0 = E[X,u,] = EIX,(Y; - X|B)| = E[X,Y;] — E[X,X[|B

Rearranging to solve for B:
EX;Y;] = E[X,X]|B

Assuming that the matrix E[X,X}] is invertible, we can express the population regression
coefficient as: )
B = (E[X,X}]) ~ EIX,Y]]

This expression shows that B is entirely determined by the joint distribution of (Y}, X;) in the
population.

The invertibility of E[X,;X}] is guaranteed if there is no perfect linear relationship among the
regressors. In particular, no pair of regressors should be perfectly correlated, and no regressor
should be a perfect linear combination of the other regressors.
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OLS Estimation

To estimate B from data, we replace population moments with sample moments. Given a
sample {(Y;,X;)}", the ordinary least squares (OLS) estimator is:

=1
18 e
B= (n ;:1 Xixg> (n ;:1 XiYi)

This can be simplified to the familiar form:

B=(X'X)'XY
The OLS estimator solves the sample moment condition:

1 & ~
=D XY, —Xif)=0
n i=1

or equivalently:

S

anxu =0
i=1

where u;, =Y, — X ;B are the sample residuals.

In this framework, OLS can be viewed as a method of moments estimator, solving the
sample analogue of the population moment condition E[X,;u;] = 0. The method of moments
principle replaces theoretical moments with their empirical counterparts to obtain estimates
of unknown parameters.

4.5 Marginal Effects

Consider the regression model of hourly wage on education (years of schooling),
wage, = (31 + fBpedu; +u,;, i=1,...,n,
where the exogeneity assumption holds:

Elu;ledu;] = 0.
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The population regression function, which gives the conditional expectation of wage given
education, can be derived as:

m(edu;) = E[wage,|edu,]
= [, + By - edu; + Efu;|eduy,]
=1 + By - edy;

Thus, the average wage level of all individuals with z years of schooling is:

m(z) = B+ By - 2.

Interpretation of Coefficients

In the linear regression model

the coefficient vector B captures the way the conditional mean of Y, changes with the
regressors X ;. Under the exogeneity assumption,

ElY; | X;] = XiB =B, + BoXio + ... + B Xy

This linearity allows for a simple interpretation. The coefficient 3; represents the partial
derivative of the conditional mean with respect to X;:

OE[Y; | Xl
0X,

]

= 8;.

This means that 8; measures the marginal effect of a one-unit increase in X;; on the expected
value of Y}, holding all other variables constant.

If X;; is a dummy variable (i.e., binary), then 3; measures the discrete change in E[Y; | X]
when X;; changes from 0 to 1.

For our wage-education example, the marginal effect of education is:

OE[wage,|edu,]
Oedu,

= B,

This theoretical population parameter can be estimated using OLS:

cps = read.csv("cps.csv")
1lm(wage ~ education, data = cps)
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Call:
Im(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education
-16.448 2.898

Interpretation: People with one more year of education are paid on average $2.90 USD more per
hour than people with one year less of education, assuming the exogeneity condition holds.

Correlation vs. Causation

The coefficient 3, describes the correlative relationship between education and wages, not
necessarily a causal one. To see this connection to correlation, consider the covariance of the
two variables:

Cov(wage;, edu;) = Cov(B; + B - edu; + u;, edu;)
= Cov(fy + B, - edy;, edu;) + Cov(u,, edy;)

The term Cov(u;,edu;) equals zero due to the exogeneity assumption. To see this, recall that
Elu;] = E[F[u;ledy;]] = 0 by the LIE and E[u;edu;] = 0 by mean uncorrelatedness, which
implies

Cov(u;,edu;) = Fluedy;] — Efu;] - Eledu;] =0

7

The coefficient 3, is thus proportional to the population correlation coefficient:

_ Cov(wage,, edu;)

sd(wage,)
B =
Var(edu;)

sd(edu;)

= Corr(wage,, edu;) -

The marginal effect is a correlative effect and does not necessarily reveal the source of the
higher wage levels for people with more education.

Regression relationships do not necessarily imply causal relationships.

People with more education may earn more for various reasons:

e They might be naturally more talented or capable

e They might come from wealthier families with better connections
e They might have access to better resources and opportunities

o Education itself might actually increase productivity and earnings
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Figure 4.3: A DAG (directed acyclic graph) showing potential confounding factors in the

education-wage relationship

The coefficient 3, measures how strongly education and earnings are correlated, but this
association could be due to other factors that correlate with both wages and education, such
as:

o Family background (parental education, family income, ethnicity)
o Personal background (gender, intelligence, motivation)

Remember: Correlation does not imply causation!

Omitted Variable Bias

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) is correlated with the dependent variable (wage,, in this scenario)
(ii) is correlated with the regressor of interest (edu;)

(iii) is omitted in the regression

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.
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The coeflicient 3, in the simple regression model measures the correlative or marginal effect, not
the causal effect. This must always be kept in mind when interpreting regression coefficients.

Control Variables

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret (3, as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as racial background and gender dummy
variables for Black and female:

wage, = 3, + Byedu, + Siexper, + ,Black, + SB:fem, + u,.
i 1 2 7 3 i 4 7 5 7 7

In this case,
OE[wage,|edu,, exper,, Black,, fem,]

Oedu;

is the marginal effect of education on expected wages, holding experience, race, and gender
fixed.

By =

lm(wage ~ education + experience + Black + female, data = cps)

Call:

lm(formula = wage ~ education + experience + Black + female,
data = cps)

Coefficients:

(Intercept) education  experience Black female
-21.7095 3.1350 0.2443 -2.8554 -7.4363

Interpretation of coefficients:

e Education: Given the same experience, racial background, and gender, people with one
more year of education are paid on average $3.14 USD more than people with one year
less of education.

o Experience: Each additional year of experience is associated with an average wage
increase of $0.24 USD per hour, holding other factors constant.

o Black: Black workers earn on average $2.86 USD less per hour than non-Black workers
with the same education, experience, and gender.

e Female: Women earn on average $7.43 USD less per hour than men with the same
education, experience, and racial background.
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Note: This regression does not control for other unobservable characteristics (such as ability)
or variables not included in the regression (such as quality of education), so omitted variable
bias may still be present.

Good vs. Bad Controls

It’s important to recognize that control variables are always selected with respect to a par-
ticular regressor of interest. A researcher typically focuses on estimating the effect of one
specific variable (like education), and control variables must be designed specifically for this
relationship.

In causal inference terminology, we can distinguish between different types of variables:

e Confounders: Variables that affect both the regressor of interest and the outcome.
These are good controls because they help isolate the causal effect of interest.

¢ Mediators: Variables through which the regressor of interest affects the outcome. Con-
trolling for mediators can block part of the causal effect we're trying to estimate.

e Colliders: Variables that are affected by both the regressor of interest and the outcome
(or by factors that determine the outcome). Controlling for colliders can create spurious
associations.

Confounders

Examples of good controls (confounders) for education are:

o Parental education level (affects both a person’s education and their wage potential)
o Region of residence (geographic factors can influence education access and job markets)
o Family socioeconomic background (affects educational opportunities and wage potential)

Figure 4.4: A DAG of the education-wage relationship with family confounder
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Mediators and Colliders

Examples of bad controls include:
e« Mediators: Variables that are part of the causal pathway from education to wages

— Current job position (education — job position — wage)
— Professional sector (education may determine which sector someone works in)
— Number of professional certifications (likely a result of education level)

<

Figure 4.5: A DAG of the education-wage relationship with job position mediator

o Colliders: Variables affected by both education and wages (or their determinants)

— Happiness/life satisfaction (might be affected independently by both education and
wages)
— Work-life balance (both education and wages might affect this independently)

<

Figure 4.6: A DAG of the education-wage relationship with happiness collider
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Bad controls create two problems:

1. Statistical issue: High correlation with the variable of interest (like education) causes
high variance in the coefficient estimate (imperfect multicollinearity).

2. Causal inference issue: They distort the relationship we’re trying to estimate by either
blocking part of the causal effect (mediators) or creating artificial associations (colliders).

Good control variables are typically determined before the level of education is determined,
while bad controls are often outcomes of the education process itself or are jointly determined
with wages.

The appropriate choice of control variables requires not just statistical knowledge but also
subject-matter expertise about the causal structure of the relationships being studied.

4.6 Application: Class Size Effect

Let’s apply these concepts to a real-world research question: How does class size affect student
performance?

Recall the CASchools dataset used in the Stock and Watson textbook, which contains infor-

mation on California school characteristics:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math) /2

We are interested in the effect of the student-teacher ratio STR (class size) on the average
test score score. Following our previous discussion on causal inference, we need to consider
potential confounding factors that might affect both class sizes and test scores.

Control Strategy

Let’s examine several control variables:

e english: proportion of students whose primary language is not English.
e lunch: proportion of students eligible for free/reduced-price meals.
e expenditure: total expenditure per pupil.

First, we should check whether these variables are correlated with both our regressor of interest
(STR) and the outcome (score):
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(1) (2) (3) (4)
(Intercept) — 698.933 686.032 700.150 665.988

STR —2.280 —1.101 —0.998 —0.235
english —0.650 —0.122 —0.128
lunch —0.547  —0.546
expenditure 0.004
Num.Obs. 420 420 420 420

R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
RMSE 18.54 14.41 9.04 8.86

library(dplyr)
CASchools [> select(STR, score, english, lunch, expenditure) [> cor()

STR score english lunch expenditure
STR 1.0000000 -0.2263627 0.18764237 0.13520340 -0.61998216
score -0.2263627 1.0000000 -0.64412381 -0.86877199 0.19127276
english 0.1876424 -0.6441238 1.00000000 0.65306072 -0.07139604
lunch 0.1352034 -0.8687720 0.65306072 1.00000000 -0.06103871

expenditure -0.6199822 0.1912728 -0.07139604 -0.06103871 1.00000000

The correlation matrix reveals that english, lunch, and expenditure are indeed correlated
with both STR and score. This suggests they could be confounders that, if omitted, might
bias our estimate of the class size effect.

Let’s implement a control strategy, adding potential confounders one by one to see how the
estimated marginal effect of class size changes:

fitl = Im(score ~ STR, data = CASchools)
fit2 = Im(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = Im(score ~ STR + english + lunch + expenditure, data = CASchools)
library(modelsummary)
mymodels = list(fitl, fit2, fit3, fit4)
modelsummary (mymodels,
statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))
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Interpretation of Marginal Effects

Let’s interpret the coeflicients on STR from each model more precisely:

e Model (1): Between two classes that differ by one student, the class with more students
scores on average 2.280 points lower. This represents the unadjusted association without
controlling for any confounding factors.

o Model (2): Between two classes that differ by one student but have the same share of
English learners, the larger class scores on average 1.101 points lower. Controlling for
English learner status cuts the estimated effect by more than half.

o Model (3): Between two classes that differ by one student but have the same share
of English learners and students with reduced meals, the larger class scores on average
0.998 points lower. Adding this socioeconomic control further reduces the estimated
effect slightly.

o Model (4): Between two classes that differ by one student but have the same share
of English learners, students with reduced meals, and per-pupil expenditure, the larger
class scores on average 0.235 points lower. This represents a dramatic reduction from
the previous model.

The sequential addition of controls demonstrates how sensitive the estimated marginal effect
is to model specification. Each coefficient represents the partial derivative of the expected test
score with respect to the student-teacher ratio, holding constant the variables included in that
particular model.

Identifying Good and Bad Controls

Based on our causal framework from the previous section, we can evaluate our control vari-
ables:

o Confounders (good controls): english and lunch are likely good controls be-
cause they represent pre-existing student characteristics that influence both class size
assignments (schools might create smaller classes for disadvantaged students) and test
performance.

o Mediator (bad control): expenditure appears to be a bad control because it’s
likely a mediator in the causal pathway from class size to test scores. Smaller classes
mechanically increase per-pupil expenditure through higher teacher salary costs per stu-
dent.
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The causal relationship can be visualized as:
Class Size — Expenditure — Test Scores

When we control for expenditure, we block this causal pathway and “control away” part of
the effect we actually want to measure. This explains the dramatic drop in the coefficient in
Model (4) and suggests this model likely underestimates the true effect of class size.

This application demonstrates the crucial importance of thoughtful control variable selection in
regression analysis. The estimated marginal effect of class size on test scores varies substantially
depending on which variables we control for. Based on causal reasoning, we should prefer
Model (3) with the appropriate confounders but without the mediator.

4.7 Nonlinear Modeling

Polynomials

A linear dependence on wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:
wage, = 31 + [yexper; + BSexper? + ,84exper? + u,.

## we focus on people with Asian background only for illustration

cps.as = cps |> subset(Asian == 1)

fit = Im(wage ~ experience + I(experience”2) + I(experience”3),
data = cps.as)

beta = fit$coefficients

beta |> round(4)

(Intercept) experience I(experience”2) I(experience”3)
20.4547 1.2013 -0.0447 0.0004

## Scatterplot
plot(wage ~ experience, data = cps.as, ylim = c(0,100))
## plot the cubic function for fitted wages
curve (
betal[1l] + beta[2]*x + betal[3]*x"2 + betal[4]*x"3,
from = 0, to = 70, add=TRUE, col='red', 1lwd=2
)
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The marginal effect depends on the years of experience:

OE[wage, |exper,]

Bexper = B, + 2Bsexper, + 3[exper?.

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.2013 + 2 - (—0.0447) - 10 + 3 - 0.0004 - 102 = 0.4273.

Interactions

A linear regression with interaction terms:

wage, = 3 + Byedu; + Bafem; + Bymarr; + S5 (marr; - fem;) + u;

lm(wage ~ education + female + married + married:female, data = cps)

Call:
Im(formula = wage ~ education + female + married + married:female,
data = cps)
Coefficients:
(Intercept) education female married female:married

-17.886 2.867 -3.266 7.167 -5.767
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The marginal effect of gender depends on the person’s marital status:

OE[wage,|edu,, fem;, marr,]

Ofem,

= f3 + Bymarr,

Interpretation: Given the same education, unmarried women are paid on average 3.27 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

J0E[wage,|edu,, fem,, marr,]

= 3, + Bsfem,

Omarr;

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

Logarithms

When analyzing wage data, we often use logarithmic transformations because they help model
proportional relationships and reduce the skewness of the typically right-skewed distribution
of wages. A common specification is the log-linear model, where we take the logarithm of
wages while keeping education in its original scale:

In the logarithmic specification
log(wage,) = B, + Byedu; + u;
we have

OE[log(wage, )|edu,]
Oedu,

= B,

This implies
0E[log(wage,)|edu;] = 3, - dedu, .

absolute absolute
change change

That is, 5 gives the average absolute change in log-wages when education changes by 1.

Another interpretation can be given in terms of relative changes. Consider the following
approximation:
E[wage,|edu;] ~ exp(E[log(wage,)|edu,]).

The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because Ellog(Y)] < log(E[Y]),
but this difference is small unless the data is highly skewed.
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The marginal effect of a change in edu on the geometric mean of wage is

Oexp(E[log(wage,)|edu;])

Oedu;

outer derivative

Using the geometric mean approximation from above, we get

OE[wage,|edu;]  Odexp(E[log(wage,)|edu,])

E[wage, |edu,]
N — —

percentage
change

linear_model = lm(wage ~ education, data
log_model = 1lm(log(wage) ~ education, data
log_model

Call:

Im(formula = log(wage) ~ education, data

Coefficients:
(Intercept) education
1.3783 0.1113

plot(wage ~ education, data =
abline(linear_model, col="blue")

coef

coefficients(log_model)

cps.as, ylim

- exp(E[log(wage,)|edu,

= exp(E[log(wage,)|edu,]) - B,.

absolute

change

cps.as)

cps.as)

cps.as)

c(0,80), xlim

curve (exp(coef [1]+coef [2] *x), add=TRUE, col="red")
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Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-linear and log-linear specifications, we also have the linear-log speci-
fication
Y =6, + By log(X) +u

and the log-log specification

log(Y') = By + By log(X) + u.

Linear-log interpretation: When X is 1% higher, we observe, on average, a 0.013, higher Y.
Log-log interpretation: When X is 1% higher, we observe, on average, a (3,% higher Y.

4.8 R-codes

metrics-sec04.R

79


https://metrics.svenotto.com/metrics-sec04.R

5 Regression Inference

Recall the linear regression framework. We observe a sample {(X;,Y;)}" ; and assume

Y,=XB+u;, PElu|X,;]=0,

where X, is a k-dimensional regressor vector (including an intercept), B is the unknown pa-
rameter vector, and u; is the error term. In matrix form we have

Y=XB+u,

where X is the n x k design matrix (its rows are: X), Y is the n-vector of dependent variables,
and u is the n-vector of errors.

The OLS estimator ,B is obtained by minimizing the sum of squared residuals:

_ ‘ - xp)2
ﬂ—argmbm;(Yz Xb)

1=

- (Zn:Xz‘Xg)_l zn:Xz‘Yz‘
i=1 i=1

= (X'X)"L(XY).

5.1 Strict Exogeneity

The weak exogeneity condition

Blu; | X;] =0

ensures that the regressors are uncorrelated with the error at the individual observation level.
However, this condition is not sufficient to guarantee that the OLS estimator is unbiased.
It still allows for u; to be correlated with regressors from other observations (X for j # 1),
which can lead to a biased estimation.

To ensure unbiasedness, we require the stronger condition of strict exogeneity:

Elu; | X;] =0 foreachj=1,..,n,
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or, equivalently in matrix form:

Elu| X] =0.

Strict exogeneity requires the entire vector of errors u to be mean independent of the full
regressor matrix X. That is, no systematic relationship exists between any regressors and any
error term across observations.

1 Note

Under i.i.d. sampling, strict exogeneity typically holds automatically: independence
across observations ensures u; is uncorrelated with X for j # i.

However, strict exogeneity may fail in dynamic time series settings, e.g.:

Y, =81 +8Y, 1 +u, EluwlY, ,]=0. (5.1)

Here, u, is uncorrelated with Y, ;, but it is correlated through Equation 5.1 with Y, which is
the regressor for the dependent variable Y, ;:

Yier =01+ B2y + vy, Elug Y] =0. (5.2)

Therefore the error of Equation 5.1 is correlated with the regressor of Equation 5.2, violating
strict exogeneity.

5.2 Unbiasedness

To derive the unbiasedness of the OLS estimator, recall the model:

Y =XB+u.

Plugging this into the OLS formula:

~

B=(X'X) XY
(X'X)"' X' (XB +u)
=B+ (X'X) X u.

Taking the conditional expectation:

EB|X] =B+ (X'X)'X'Elu| X].

Under strict exogeneity, E[u | X| =0, so:
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Taking the expectation over the sampling distribution of X:
E[B] = E[E[B | X]] = B.
Thus, each element of the OLS estimator is unbiased:

E[Bj] :BJ fOI’j:L...,k.

Under strict exogeneity, the OLS estimator B is unbiased:
E[B] =B

Even when strict exogeneity fails (as in time-dependent settings) asymptotic unbiasedness
may still hold:

lim E[B] = B.

n—oo

For time series regressions, OLS remains asymptotically unbiased if far distant future regressors
are independent of current errors, and the underlying relationship remains stable over time,
i.e., there are no structural changes in the conditional mean function over time.

5.3 Sampling Variance of OLS

The OLS estimator B provides a point estimate of the unknown population parameter 8.
For example, in the regression

wage, = () + Byedu; + Bzfem,; + u,,

we obtain specific coefficient estimates:

cps = read.csv("cps.csv")
fit = Ilm(wage ~ education + female, data = cps)

fit |> coef()

(Intercept)  education female
-14.081788 2.958174 -7.533067

82



The estimate for education is ,52 = 2.958. However, this point estimate tells us nothing
about how far it might be from the true value §,. That is, it does not reflect estimation

uncertainty, which arises because ,B depends on a finite sample that could have turned out
differently.

Larger samples tend to reduce estimation uncertainty, but in practice we only observe one
finite sample. To quantify this uncertainty, we study the sampling variance of the OLS
estimator:

Var(B | X),
the conditional variance of B given the regressor matrix X.
General formula for sampling variance of OLS:

Let D = Var(u | X) be the conditional covariance matrix of the error terms. Then,
Var(B| X) = (X'X) ' X'DX(X'X)?
This follows from R
B=B+(X'X)"'X'u
together with the general rule that for any matrix A,

Var(Au) = AVar(u) A’

Depending on the structure of the data and the behavior of the error term, this expression
takes different forms:

Homoskedasticity

Let {(X;,Y;)}, be an i.i.d. sample and let the error term be homoskedastic, meaning
Var(u; | X;) = o? for all i.

Homoskedasticity means that the variance of the error does not depend on the value of the
regressor. For instance, in a regression of wage on female, homoskedasticity means that men
and women have the same error variance. Homoskedasticity holds if the error u, is independent
of the regressor X,.

The homoskedastic error covariance matrix has the following simple form:

g2 0 - 0

2
D=c1,=|" 0
0 0 o2
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In this case, the sampling variance simplifies to:

Var(B | X) = o>(X'X)"L.

This is the Gauss-Markov setting, in which OLS is the Best Linear Unbiased Estimator
(BLUE).

Heteroskedasticity
If the sample is i.i.d., but Var(u, | X;) depends on X, the errors are heteroskedastic:
Var(u; | X;) = 0*(X;) = 07.

For instance, in a regression of wage on gender, the wage variability might differ between men
and women.

In this case, D remains diagonal but no longer proportional to the identity matrix:

a2 0 0
p_|0 o3 0
0 0 o2

The sampling variance becomes:

Var(B| X) = (X' X)* [zn: agxixg] (X'X)1.

Clustered Sampling

For clustered observations we can use the notation (X, ,Y; ) for i = 1,...,n, observations in
cluster g =1, ...,G:

Y;g:X;gﬂ_}_uiga 7;:]_,...777/9’ g:]_”G

We assume:

(i) Weak exogeneity within clusters: Efu;, | X |=0forallg=1,...,G.
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(ii) Independence across clusters: (Y’ .,Yngg,X/ ,X;ng) are iid. forg=1,...,G.

1gs ** 19>

This together ensures strict exogenity and unbiasedness of OLS, but allow for arbitrary corre-
lation of errors within each cluster. The covariance matrix D has a block-diagonal form:

D, 0 - 0
D_ 0 D, - 0
0 0 - Dg

where each block D is an n, X n, matrix capturing the error covariances within cluster g:

E[u%g’X} E[ulgu2g|X] E[ulgungg‘X]
D — E[u2gulg|X} E[u%g|X] E[u2gungg|X]
9 : : :
E[unggu1g|X] E[UHQQUZQ‘X] E[u?’bgg X]

~

The middle part of the sandwich form of the covariance matrix Var(8 | X) becomes:

X'DX = XG; E [( Z; X gt ) 2 X gt ) / ’X] .
= e =

Time Series Data

In time series regressions, errors u, are often serially correlated. A typical example is an
AR(1) process:
Uy = Puy_y + &y,

2

where |¢| < 1 and ¢, is i.i.d. with mean 0 and variance oZ.

Then the autocovariance structure is:
Cov(uy,u,_p,) = o*¢", for h >0,

where

2
2 g

The resulting covariance matrix D has a Toeplitz structure:

1 (;5 ¢2 ¢n71
6 1 ¢ - g
D = 02 ¢2 ¢ 1 ¢n73

¢n.71 (1)77:72 qsn;B 1
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5.4 Gaussian Regression

The Gaussian regression model builds on the linear regression framework by adding a dis-
tributional assumption. It assumes an i.i.d. sample and that the error terms are conditionally

normally distributed:

That is, conditional on the regressors, the error has mean zero (exogeneity), constant variance
(homoskedasticity), and a normal distribution. This assumption implies that the OLS esti-
mator itself is normally distributed, since it is a linear combination of normally distributed
errors:

BIX ~N(B.o*(X' X)),
In particular, each standardized coefficient follows a standard normal distribution:

BB v,
sd(B; | X)

with conditional standard deviation

sd(B; | X) = 0/ (X'X)3;.

Classical Standard Errors

The conditional standard deviation of Bj is unknown because the population error variance o2

is unknown.

A standard error of Bj is an estimator of the conditional standard deviation. To construct
a valid standard error under this setup, we can use the adjusted residual variance to estimate

2
1 n
2 _ ~9
§2 = E uz.
U o —k 4 v
=1

o°:
The classical standard error (valid under homoskedasticity) is defined as:

Sehom(ﬁj) = Sa (X/X);]l

Under the Gaussian assumption Equation 5.3, B and s% are independent and s% has the
following property:
(n—k)s2

2
NX .
0_2 n—k
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This allows us to derive the exact distribution of the standardized OLS coefficient when we
replace the population standard deviation with its sample estimate (the standard error):
éb‘_ﬁ% B ﬁ%"’ﬁ% g ]V(O,l) t
— —= — - — — n
Sepom(B; | X)  sd(B; | X) Sa X2 ./ (n—k)

This means that the OLS coefficient standardized with the homoskedastic standard error in-
stead of the standard deviation follows a t-distribution with n — k degrees of freedom.

@ For a refresher on the normal and ¢-distribution, see
Probability Tutorial Part 4

To estimate the full sampling covariance matrix Var(ﬁ | X), the classical covariance matrix
estimator is:

f/'\hmn = S%(X/X)il'

## classical homoskedastic covariance matrixz estimator:
vecov (fit)

(Intercept) education female
(Intercept) 0.18825476 -0.0127486354 -0.0089269796
education -0.01274864 0.0009225111 -0.0002278021
female -0.00892698 -0.0002278021 0.0284200217

Classical standard errors sehom(ﬁj) are the square roots of the diagonal entries:

## classical standard errors:
sqrt (diag(vcov(fit)))

(Intercept)  education female
0.43388334 0.03037287 0.16858239

They are also displayed in parentheses in a typical regression summary table:

library(modelsummary)

modelsummary(fit, gof_map = "none")
The argument gof_map = "none" omits all goodness of fit statistics like R-squared and
RMSE.
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(1)
(Intercept) —14.082

(0.434)
education 2.958

(0.030)
female —7.533

(0.169)

Confidence Intervals

A confidence interval is a range of values that is likely to contain the true population parameter
with a specified confidence level or coverage probability, often expressed as a percentage
(e.g., 95%).

A (1 — a) confidence interval for §; is an interval I;_, such that

Under the Gaussian assumption Equation 5.3, this property is satisfied for the classical ho-
moskedastic confidence interval:

Ilfa = ﬁj - tnfk,lfa/Z : Sehom(ﬂj); Bj + tnfk,lfa/Z ' Sehom(ﬂj> )

where t,,_1 1_, /o is the 1 —a/2-quantile from the t-distribution with n — k degrees of freedom.
Common coverage probabilities are 0.90, 0.95, 0.99, and 0.999.

Table 5.1: Student’s t-distribution quantiles

df 0.95 0.975 0.995 0.9995

1 6.31 12.71 63.66 636.6
2 292 430 992 316
3 235 3.18 584 129
) 2.02 257 4.03 6.87

10 1.81 223 317 4.95
20 1.72 2.09 285 3.8
50 1.68 201 268 3.50
100 1.66 1.98 2.63 3.39
—o0 164 196 258 3.29

88



(1)

(Intercept) —14.082
[—14.932, —13.231]
education 2.958
[2.899, 3.018]
female —7.533
[—7.863, —7.203]

The last row (indicated by — o0) shows the quantiles of the standard normal distribution
N(0,1).

You can display 95% confidence intervals in the modelsummary output using the conf.int
argument:

modelsummary(fit, gof_map = "none", statistic = "conf.int")

Note: the confidence interval is random, while the parameter ; is fixed but unknown.

I'VEAGAIN,

- g

imgflip.com

A correct interpretation of a 95% confidence interval is:

89



o If we were to repeatedly draw samples and construct a 95% confidence interval from each
sample, about 95% of these intervals would contain the true parameter.

Common misinterpretations to avoid:

e “There is a 95% probability that the true value lies in this interval.”
e “We are 95% confident this interval contains the true parameter.”

These mistakes incorrectly treat the parameter as random and the interval as fixed. In reality,
it’s the other way around.

A 95% confidence interval should be understood as a coverage probability: Before observing
the data, there is a 95% probability that the random interval will cover the true parameter.

A helpful visualization:

https://rpsychologist.com/d3/ci/

Limitations of the Gaussian Approach

The Gaussian regression framework assumes:

o Weak exogeneity: Flu; | X,] =0

o Lid. sample: {(Y;,X,)}",

« Homoskedastic, normally distributed errors: u,;|X; ~ N (0, 0?)
o X'X is invertible (i.e. X has full rank)

While mathematically convenient, these assumptions are often violated in practice. In partic-
ular, the normality assumption implies homoskedasticity and that the conditional distribution
of Y; given X, is normal, which is an unrealistic scenario in many economic applications.

Historically, homoskedasticity has been treated as the “default” assumption and heteroskedas-
ticity as a special case. But in empirical work, heteroskedasticity is the norm.

A plot of the absolute value of the residuals against the fitted values shows that individuals
with predicted wages around 10 USD exhibit residuals with lower variance compared to those
with higher predicted wage levels. Hence, the homoskedasticity assumption is implausible:

# Plot of absolute residuals against fitted values
plot(abs(fit$residuals) ~ fit$fitted.values)
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The Q-Q-plot is a graphical tool to help us assess if the errors are conditionally normally
distributed.

Let ;) be the sorted residuals (i.e. 4y < ... < 1,)). The Q-Q-plot plots the sorted residuals
;) against the ((i —0.5)/n)-quantiles of the standard normal distribution.

If the residuals are lined well on the straight dashed line, there is indication that the distribution
of the residuals is close to a normal distribution.

set.seed(123)

par (mfrow = c(1,2))

## auziliary regresston with simulated mormal errors:
fit.aux = Im(rnorm(500) ~ 1)

## (-(-plot of the residuals of the auziliary regression:
qqnorm(residuals(fit.aux))

qqline(residuals(fit.aux))

## (-(-plot of the residuals of the wage regression:
qqnorm(residuals(fit))

qqline(residuals(fit))
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Normal Q—-Q Plot Normal Q-Q Plot
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In the left plot you see the Q-Q-plot for an example with simulated normally distributed errors,
where the Gaussian regression assumption is satisfied.

The right plot indicates that, in our regression of wage on education and female, the normality
assumption is implausible.

5.5 Heteroskedastic Linear Model

The classical approach to regression relies on strong distributional assumptions: normality and
homoskedasticity of the errors. While this enables exact inference in small samples, it is rarely
justified in empirical applications.

The modern econometric approach avoids such assumptions and instead relies on asymp-
totic approximations under weaker conditions (i.e., finite kurtosis instead of normality and
homoskedasticity).

Heteroskedastic Linear Model

We assume that the sample {(Y;, X))}, satisfies the linear regression equation
Y, =X B+u;, i=1..,n,
under the following conditions:
e (Al) E[u;|X;] =0 (weak exogeneity)

o« (A2) {(V;, X))}, is an ii.d. sample (random sampling)
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» (A3) kur(Y;) < oo and kur(X;;) <ocoforall j=1,..,k
(bounded kurtosis: large outliers are unlikely)

« (A4) Z?:l X, X is invertible (OLS is well defined)
Under heteroskedasticity, the error variance may depend on the regressor:
o} = Var(u; | X;),

and the conditional standard deviation of @ is

sd(B;| X) = Q [<X’X>1 ( Z 02X X;) <X'X>1]

Jj
Unlike in the Gaussian case, the standardized OLS coefficient does not follow a standard
normal distribution in finite samples:

B;— B

= » N(0,1).
sd(B; | X) oy

However, for large samples, the central limit theorem guarantees that the OLS estimator
is asymptotically normal:

. d
———— =5 N(0,1) asn — oc.

This result holds because the OLS estimator can be expressed as:

n

ViR~ B) = Vi (ZXX) > X

1< ,
- (3 xx)

-1 1 n
—SN" X u,
\/ﬁ Z:ZI 777

where:

e By the law of large numbers:
1 S / p /
n ZXiXi - B[X,X]] =Q,
i—1
¢ And by the central limit theorem:

1 & d
> X, h = Flu; X, X]].
NP> X,u; - N(0,92), where Q [u; X, X7]
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@ For more details on stochastic convergence and the central limit theorem, see Proba-
bility Tutorial Part 4

Asymptotic Distribution of OLS Estimator

Under the heteroskedastic linear model:

Vi(B—B) 5 N0, Q0Q),
where Q@ = E[X,X/] and Q = E[u? X, X]].

This asymptotic distribution forms the basis for heteroskedasticity-robust inference.

5.6 Heteroskedasticity-Robust Standard Errors

The asymptotic distribution of the OLS estimator under heteroskedasticity depends on two
population matrices:

e Q=FE[X,X]], and
. 0= FulX,X]
While @ can be consistently estimated by its sample counterpart,

O )

estimating € is more challenging because the error terms u,; are unobserved.

To overcome this, we replace the unobserved u; with the OLS residuals:

"&i = Yz _XQB'

This yields a consistent estimator of €:

Substituting into the asymptotic variance formula, we obtain the heteroskedasticity-
consistent covariance matrix estimator, also known as the White estimator (White,
1980):
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White (HCO0) Estimator

Vieo = (X'X)~ (Z 22X, X, ) (X'X)!

This estimator remains consistent for Var([‘} | X) even if the errors are heteroskedastic. How-
ever, it can be biased downward in small samples.

HC1 Correction

To reduce small-sample bias, MacKinnon and White (1985) proposed the HC1 correction,
which rescales the estimator using a degrees-of-freedom adjustment:

17 n / — . ~ / / —
Vier = ki (X'x)~ (Z“?szz> (X' X)™!
=1

The HC1 standard error for the j-th coefficient is then:
5€hc1(5j) = [thl]jj

These standard errors are widely used in applied work because they are valid under general
forms of heteroskedasticity and easy to compute. Most statistical software (including R and
Stata) uses HC1 by default when robust inference is requested.

Robust Confidence Intervals

Using heteroskedasticity-robust standard errors, we can construct confidence intervals that
remain valid under heteroskedasticity.

For large samples, a (1 — «) confidence interval for j3; is:

Ilfoz = [53 + Rl—a)2 * Sehcl(ﬁj)] )

where z;_ /5 is the standard normal critical value (e.g., 2y 975 = 1.96 for a 95% interval).
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For moderate sample sizes, using a t-distribution with n — k degrees of freedom gives better

finite-sample performance:

~

L = [Bj Tt k1a/2- 56hc1(5j)] .

These robust intervals satisfy the asymptotic coverage property:

nh_)Igo PBjel_,)=1-a.

1 Why software uses t-quantiles:

large.

Under heteroskedasticity, there’s no theoretical justification for using t-quantiles instead
of normal ones. However, most software use ¢,,_,. by default to match the homoskedastic
case and improve finite-sample performance. For large samples, this makes little differ-
ence, as t-quantiles converge to standard normal quantiles as degrees of freedom grow

The fixest package provides the feols function to estimate regression models with
heteroskedasticity-robust standard errors. The vcov argument allows you to specify the type

of covariance matrix estimator to use.

library(fixest)
fit.hom = feols(wage ~ education + female, data
fit.het = feols(wage ~ education + female, data

mymodels = list(
"Homoskedastic" = fit.hom,
"Heteroskedastic" = fit.het

)

## Standard error comparison:

modelsummary (mymodels)

## Confidence interval comparison:
modelsummary (mymodels, statistic = "conf.int")

"iid")
"hCl")

cps, vcov
cps, vcov

AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are statistical
measures that evaluate model quality by balancing goodness-of-fit against complexity. A
smaller value indicates a better model. In this example we see the same values for both
models because the regression equations are the same and only the standard errors differ.
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Homoskedastic Heteroskedastic
(Intercept) —14.082 —14.082
(0.434) (0.500)
education 2.958 2.958
(0.030) (0.040)
female —7.533 —7.533
(0.169) (0.162)
Num.Obs. 50742 50742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441515.9 441515.9
BIC 441542 .4 441542.4
RMSE 18.76 18.76
Std.Errors 11D Heteroskedasticity-robust
Homoskedastic Heteroskedastic
(Intercept) —14.082 —14.082
[—14.932, —13.231] [—15.062, —13.102]
education 2.958 2.958
[2.899, 3.018] [2.880, 3.037]
female —7.533 —7.533
[—7.863, —7.203] [—7.850, —7.216]
Num.Obs. 50742 50742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441515.9 441515.9
BIC 441542 .4 441542.4
RMSE 18.76 18.76
Std.Errors 11D Heteroskedasticity-robust
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5.7 R-codes

metrics-sec05.R
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6 Robust Testing

In applied regression analysis, we often want to assess whether a regressor has a statistically
significant relationship with the outcome variable (conditional on other regressors).

6.1 t-Test

The most common hypothesis test evaluates whether a regression coefficient equals zero:
Hy:p;=0 vs. Hy:p;#0.

This corresponds to testing whether the marginal effect of the regressor X;; on the outcome

Y, is zero, holding other regressors constant.

We use the t-statistic:

~

where se(f3;) is a standard error.

You may use the classical standard error if you have strong evidence that the errors are
homoskedastic. However, in most economic applications, heteroskedasticity-robust standard
errors are more reliable.

Under the null, T} follows approximately a ¢, distribution. We reject H, at the significance
level « if:

|T]‘ > tn7k717a/2'
This decision rule is equivalent to checking whether the confidence interval for §; includes 0:

o Reject H if 0 lies outside the 1 — o confidence interval
o Fail to reject (accept) H, if O lies inside the 1 — « confidence interval
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6.2 p-Value

The p-value is a criterion to reach a hypothesis test decision conveniently:

reject H, if p-value < o

do not reject H, if p-value > «

Formally, the p-value represents the probability of observing a test statistic as extreme or more
extreme than the one we computed, assuming H, is true. For the t-test, the p-value is:

p-value = P(|T'| > |T}| | Hy is true)

Here, T' is a random variable following the null distribution Z ~ ¢,,_,, and T} is the observed
value of the test statistic.

Another way of representing the p-values of a t-test is:
p-value = 2(1 — Ftn,kOTjD)a

where F, s the cumulative distribution function (CDF) of the ¢,,_,-distribution.

A common misinterpretation of p-values is treating them as the probability that the null
hypothesis is being true. This is incorrect. The p-value is not a statement about the probability
of the null hypothesis itself.

p=0.04
. means the null

hypothesis

Is 4% likely

p=0.04 means
there's a 4%
chance of these
(or more extreme)
results under
the null hypothesis
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The correct interpretation is that the p-value represents the probability of observing a test
statistic at least as extreme as the one calculated from our sample, assuming that the null
hypothesis is true.

In other words, a p-value of 0.04 means:

e NOT “There’s a 4% chance that the null hypothesis is true”
¢« INSTEAD “If the null hypothesis were true, there would be a 4% chance of observing
a test statistic this extreme or more extreme”

Small p-values indicate that the observed data would be unlikely under the null hypothesis,
which leads us to reject the null in favor of the alternative. However, they do not tell us
the probability that our alternative hypothesis is correct, nor do they directly measure the
magnitude or significance of the marginal effect.

1 Relation to Confidence Intervals:

Zero lies outside the (1—«) confidence interval for 3, if and only if the p-value for testing
Hy: B; =0is less than a.

6.3 Significance Stars

Regression tables often use asterisks to indicate levels of statistical significance. Stars summa-
rize statistical significance by comparing the t-statistic to critical values (or equivalently, the
p-value or whether 0 is covered by the confidence interval)

The convention within R is:

Stars p-value t-statistic Confidence interval

ok p < 0.001 T5] >t k.0.995 0 outside I gg9

ok 0.001 <p <0.01  t, 4995 > |T;] > 0 outside I, gg, but inside I gg9
tn—k,0.975

* 0.01 <p<0.05 tnr0.0m5 > |Tj| > 1, 1095 0 outside Iy g5, but inside I; gq
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(1) (2)

(Intercept) —14.082%** —14.082%**

(0.434) (0.500)
education 2,958+ 2.958%#*

(0.030) (0.040)
female —T7.533*** —T7.533***

(0.169) (0.162)
Num.Obs. 50742 50742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441515.9 441515.9
BIC 4415424 4415424
RMSE 18.76 18.76
Std.Errors 1ID Heteroskedasticity-robust

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

1 Significance Stars Convention

Note that most economists use the following significance levels: *** for 1%, ** for 5%,
and * for 10%. In this lecture, we follow the convention of R, which uses the significance
levels **x* for 0.1%, ** for 1%, and * for 5%.

Regression Tables

Let’s revisit the regression of wage on education and female

library(fixest)
library(modelsummary)
cps = read.csv("cps.csv")

fit.hom = feols(wage ~ education + female, data
fit.het = feols(wage ~ education + female, data

mymodels = list(fit.hom, fit.het)
modelsummary (mymodels, stars = TRUE)
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To see the exact t-statistics and p-values, you can use the summary() function:

summary (fit.hom)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: IID
Estimate Std. Error t value Pr(>|tl)
(Intercept) -14.08179  0.433883 -32.4552 < 2.2e-16 **x%

education 2.95817 0.030373 97.3953 < 2.2e-16 *xx*
female -7.53307 0.168582 -44.6848 < 2.2e-16 *xx*
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

RMSE: 18.8 Adj. R2: 0.179696

summary (fit.het)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) -14.08179  0.500078 -28.1592 < 2.2e-16 **x*

education 2.95817 0.040110 73.7512 < 2.2e-16 *xx*
female -7.53307 0.161644 -46.6027 < 2.2e-16 *xx*
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

RMSE: 18.8 Adj. R2: 0.179696

All p-values are super small: 2.2e-16 means 2.2 - 10716 (15 zeros after the decimal point,
followed by 22).

Let’s also revisit the CASchools dataset and examine four regression models on test scores.

library (AER)

data(CASchools, package = "AER")

CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read + CASchools$math)/2

fitA = feols(score ~ STR, data = CASchools)

fitB = feols(score ~ STR + english, data = CASchools)

fitC = feols(score ~ STR + english + lunch, data = CASchools)

fitD = feols(score ~ STR + english + lunch + expenditure, data = CASchools)
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(1) (2)

(3)

(4)

(Intercept)  698.933*%**  686.032***  700.150***  665.988***
(9.467) (7.411) (4.686) (9.460)
STR —2.280%**  —1.101**  —(0.998*** —0.235
(0.480) (0.380) (0.239) (0.298)
english —0.650%**  —(.122%** (. 128%**
(0.039) (0.032) (0.032)
lunch —0.547**F%  —(0.546%**
(0.022) (0.021)
expenditure 0.004***
(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors 1ID 1ID 1ID 1ID

+ p <0.1, * p <0.05, *¥* p <0.01, *** p <0.001

Classical (Homoskedastic) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary (mymodels, stars = TRUE, vcov

Robust (HC1) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary (mymodels, stars = TRUE, vcov =
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) ) ) @
(Intercept) — 698.933***  686.032***  700.150***  665.988***
(10.364) (8.728) (5.568) (10.377)
STR —2.280%*** —1.101* —0.998*** —0.235
(0.519) (0.433) (0.270) (0.325)
english —0.650%**  —(0.122%F*  —(,128%**
(0.031) (0.033) (0.032)
lunch —0.547HFF  —(0.546%**
(0.024) (0.023)
expenditure 0.004***
(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors HC1 HC1 HC1 HC1

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

105



Interpretation of STR coefficient:

¢ Models A-C: The coefficient is negative and statistically significant. However, when
using robust standard errors, the coefficient in model B becomes only weakly significant.

e Model D: The coefficient remains negative but becomes insignificant when controlling
for expenditure.

As discussed earlier, expenditure is a bad control in this context and should not be used to
estimate a ceteris paribus effect of class size on test scores.

6.4 Testing for Heteroskedasticity: Breusch-Pagan Test

Classical standard errors should only be used if you have statistical evidence that the errors
are homoskedastic. A statistical test for this is the Breusch-Pagan Test.

Under homoskedasticity, the variance of the error term is constant and does not depend on
the values of the regressors:

Var(u; | X;) = 0* (constant).

To test this assumption, we perform an auxiliary regression of the squared residuals on the
original regressors:

~92 ’ .

u; =Xy+v, i=1,...,n,

where:
o u, are the OLS residuals from the original model,

e v are auxiliary coefficients,
e v, is the error term in the auxiliary regression.

If homoskedasticity holds, the regressors should not explain any variation in 42, which means

the auxiliary regression should have low explanatory power.

Let R2 . be the R-squared from this auxiliary regression. Then, the Breusch—Pagan (BP)

test statistic is:
BP =n-R2,

Under the null hypothesis of homoskedasticity,

Hy:Var(u; | X;) = o2,
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the test statistic follows an asymptotic chi-squared distribution with k—1 degrees of freedom:
d o
BP — xi_4

We reject H, at significance level « if:

BP > X o k1

This basic variant of the BP test is Koenker’s version of the test. Other variants include further
nonlinear transformations of the regressors.

In R, the test is implemented via the bptest () function from the AER package. Unfortunately,
the bptest () function does not work directly with feols objects, so we need to estimate the
model first with 1m():

fit = 1m(wage ~ education + female, data = cps)
bptest (fit)

studentized Breusch-Pagan test

data: fit
BP = 1070.3, df = 2, p-value < 2.2e-16

In the wage regression the BP test clearly rejects H,, which is strong statistical evidence that
the errors are heteroskedastic.

Let’s apply the test to the CASchools model:

1lm(score ~ STR + english, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: 1m(score ~ STR + english, data = CASchools)
BP = 29.501, df = 2, p-value = 3.926e-07

lm(score ~ STR + english + lunch, data = CASchools) |> bptest()

107



studentized Breusch-Pagan test

data: 1m(score ~ STR + english + lunch, data = CASchools)
BP = 9.9375, df = 3, p-value = 0.0191

Im(score ~ STR + english + lunch + expenditure, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: 1m(score ~ STR + english + lunch + expenditure, data = CASchools)
BP = 5.9649, df = 4, p-value = 0.2018

In the regression of score on STR and english there is strong statistical evidence that errors
are heteroskedastic, whereas when adding lunch and expenditure there is no evidence of
heteroskedasticity. See the difference in the absolute residuals against fitted values plot:

par (mfrow = c(1,2))
plot(abs(fitB$residuals) ~ fitB$fitted.values)
plot(abs(fitD$residuals) ~ fitD$fitted.values)
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The heteroskedasticity pattern in model (2) likely occurred because of a nonlinear dependence
of the omitted variables 1lunch and expenditure with the included regressors STR and english.
The inclusion of these variables in model (4) eliminated the heteroskedasticity (apparent het-
eroskedasticity). Therefore, heteroskedasticity is sometimes a sign of model misspecification.
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6.5 Testing for Normality: Jarque—Bera Test

A general property of a normally distributed variable is that it has zero skewness and kurtosis
of three. In the Gaussian regression model, this implies:

;| X; ~N(0,0%) = E[u}]=0, FElu}]=30c"

7

The sample skewness and sample kurtosis of the OLS residuals are:

1 n
ske — g a3, kur —7 E
no “ naa

=1

A joint test for normality — assessing both skewness and kurtosis — is the Jarque—Bera
(JB) test, with statistic:

JB=n <é§1§(@)2 + o (@) - 3)2>

Under the null hypothesis of normal errors, this test statistic is asymptotically chi-squared
distributed:

d
JB—>Xg

We reject H at level a if:
JB > Xffa,Q‘

In R, we can apply the test using the moments package:

library (moments)
jarque.test (fitD$residuals)

Jarque-Bera Normality Test
data: fitD$residuals

= 8.9614, p-value = 0.01133
alternative hypothesis: greater
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Although the Breusch—Pagan test does not reject homoskedasticity for £itD (so classical stan-
dard errors are valid asymptotically), the JB rejects the null hypothesis of normal errors at
the 5% level and provides statistical evidence that the errors are not normally distributed.

This means that exact inference based on t-distributions is not valid in finite samples, and
confidence intervals or t-test results give only large sample approximations.

In econometrics, asymptotic large sample approximations have become the convention because
exact finite sample inference is rarely feasible.

6.6 Joint Hypothesis Testing

So far, we’ve tested whether a single coefficient is zero. But often we want to test multiple
restrictions simultaneously, such as whether a group of variables has a joint effect.

The joint exclusion hypothesis formulates the null hypothesis that a set of coefficients or
linear combinations of coefficients are equal to zero:

where:

e Ris a q x k restriction matrix,
e 0 is the g x 1 vector of zeros,
e ¢ is the number of restrictions.

Consider for example the score on STR regression with interaction effects:

## Create dummy variable for high proportion of English learners
CASchools$HiEL = (CASchools$english >= 10) |> as.numeric()

fitE = feols(score ~ STR + HiEL + STR:HiEL, data = CASchools, vcov = "hcl")
fitE |> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) 682.245837 11.867815 57.487065 < 2.2e-16 ***

STR -0.968460 0.589102 -1.643961 0.10094
HiEL 5.639135 19.514560 0.288971 0.77275
STR:HiEL -1.276613 0.966920 -1.320289 0.18746
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Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 15.8 Adj. R2: 0.305368

The model output reveals that none of the individual t-tests reject the null hypothesis that
the individual coefficients are zero.

However, these results are misleading because the true marginal effects are a mixture of these

coeflicients:
O0E[score; | X]

OSTR,

Therefore, to test if STR has an effect on score, we need to test the joint hypothesis:

= [y + B, - HIEL;.

In terms of the multiple restriction notation H, : R = 0, we have

0100
R= (0 0 0 1) '
Similarly, the marginal effects of HiEL is:

OF][score; | X|]

OHiEL, B + By - STR,.

We test the joint hypothesis that 53 = 0 and 3, = 0O:

0010
R_(0001)'

Wald Test

The Wald test is based on the Wald distance:
d = RB,

which measures how far the estimated coefficients deviate from the hypothesized restrictions.

The covariance matrix of the Wald distance is: Var(d|X) = RVar(B|X JR’, which can be
estimated as:

Var(d | X) = RVR'.
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The Wald statistic is the squared, variance-standardized distance:
W =d (RVR')"'d,

where V is a consistent estimator of the covariance matrix of 8 (e.g., HC1 robust: V= ?hcl).

Under the null hypothesis, and assuming (A1)—(A4), the Wald statistic has an asymptotic
chi-squared distribution:

d o
W = X3
where ¢ is the number of restrictions.

The null is rejected if W > X%,a’q.

F-test

The Wald test is an asymptotic size-a-test under (Al)—(A4). Even if normality and ho-
moskedasticity hold true as well, the Wald test is still only asymptotically valid, i.e.:

lim P(Wald test rejects Hy|H, true) = a.

n—,oo

The F-test is the small sample correction of the Wald test. It is based on the same distance
as the Wald test, but it is scaled by the number of restrictions g:

P IZ/ _ ;(RB —rY(RVR)"\(RB —1).

Under the restrictive assumption that the Gaussian regression model holds, and if V = f/\hom
is used, it can be shown that
F~ Fq;n—k

for any finite sample size n. Here, F,_, is the F-distribution with ¢ degrees of freedom in
the numerator and n — k degrees of freedom in the denominator.

The test decision for the F-test:

do not reject H, if F' < F(
reject Hy it F'> F,

1—a,q,n—k)>

1-a,q,n—k)>

where F, ., ..., is the p-quantile of the F distribution with m,; degrees of freedom in the
numerator and m, degrees of freedom in the denominator.
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i F- and Chi-squared distribution

Similar to how the t-distribution ¢,,_, approaches the standard normal as sample size
increases, we have ¢ - F.,_;, — Xg as n — oo. Therefore, the F-test and Wald test
become asymptotically equivalent and lead to identical statistical conclusions in large
samples. For single constraint (q=1) hypotheses of the form H, : 3; = 0, the F-test is
equivalent to a two-sided t-test.

The F-test can be viewed as a finite-sample correction of the Wald test. It tends to be
more conservative than the Wald test in small samples, meaning that rejection by the
F-test generally implies rejection by the Wald test, but not necessarily vice versa. Due
to this more conservative nature, which helps control false rejections (Type I errors) in
small samples, the F-test is often preferred in practice.

F-tests in R
The function wald() from the fixest package performs an F-test:

wald(fitE, keep = "STR")

Wald test, HO: joint nullity of STR and STR:HiEL
stat = 5.6381, p-value = 0.003837, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

wald(fitE, keep = "HiEL")

Wald test, HO: joint nullity of HiEL and STR:HiEL
stat = 89.9, p-value < 2.2e-16, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

The hypotheses that STR and HiEL have no effect on score can be clearly rejected.

Another research question is whether the effect of STR on score is zero only for the subgroup
of schools with a high proportion of English learners (HiEL = 1). In this case, the marginal
effect is:
O0FE[score; | X;, HIEL, = 1]
OSTR,

262+/B4'17

and the null hypothesis is:
Hy: By + B4 =0.
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The corresponding restriction matrix is:
R=(0 1 0 1),

where the number of restrictions is ¢ = 1.
The function linearHypothesis() from the AER package is more flexible for these cases:
## Define hypothesis matriz:

R = matrix(c(0,1,0,1), ncol = 4)
linearHypothesis(fitE, hypothesis.matrix = R, test = "F", vcov. = vcovHC(fitE, type = "HC1")

Linear hypothesis test:
STR + STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + STR:HiEL

Note: Coefficient covariance matrix supplied.

Res.Df Df F  Pr(>F)
1 417
2 416 1 8.5736 0.003598 *x*

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Similarly, this hypothesis can be rejected at the 0.01 level.

6.7 Jackknife Methods

Projection Matrix

Recall the vector of fitted values Y = X Ef Inserting the model equation gives:

— ~

Y =XB=X(X'X)"'X'Y = PY.
N ——— —
=P

The projection matrix P is also known as the influence matriz or hat matrix and maps
observed values to fitted values.
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Leverage Values

The diagonal entries of P, given by

hy = X{(X' X)X,
are called leverage values or hat values and measure how far away the regressor values of
the i-th observation X, are from those of the other observations.

Properties of leverage values:

0<hy <1, zn:h = k.
1=1

Leverage values h,; indicate how much influence an observation X, has on the regression fit,
e.g., the last observation in the following artificial dataset:

X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)

plot(X,Y, main="0LS regression line with and without last observation")
abline(1m(Y~X), col="blue")

abline(Im(Y[1:7]~X[1:7]), col="red")

OLS regression line with and without last observation

o
o
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0 100 200 300 400 500
X
hatvalues (Im(Y~X))
1 2 3 4 5 6 7

0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.986964
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A low leverage implies the presence of many regressor observations similar to X, in the sample,
while a high leverage indicates a lack of similar observations near X,.

An observation with a high leverage h,; but a response value Y; that is close to the true regres-
sion line X8 (indicating a small error u,) is considered a good leverage point. Despite being
unusual in the regressor space, this point improves estimation precision because it provides
valuable information about the regression relationship in regions where data is sparse.

Conversely, a bad leverage point occurs when both h,; and the error u, are large, indicating
both unusual regressor and response values. This can misleadingly impact the regression fit.

The actual error term is unknown, but standardized residuals can be used to differentiate
between good and bad leverage points.

Standardized Residuals

Many regression diagnostic tools rely on the residuals of the OLS estimation u,; because they
provide insight into the properties of the unknown error terms u,.

Under the homoskedastic linear regression model (A1)—(Ab), the errors are independent and
have the property
Var(u; | X) = o2
Since PX = X and, therefore,
u=(I,-P)Y =(,-P)(XB+u)=(,—Pu,

n
the residuals have a different property:

Var(u| X) =o%I, — P).
The i-th residual satisfies

Var(i; | X) = o(1 — hy,),
where h;; is the i-th leverage value.

Under the assumption of homoskedasticity, the variance of 4, depends on X, while the variance
of u,; does not. Dividing by /1 — h;; removes the dependency:

~

Var (uz
1—hy

X>202

The standardized residuals are defined as follows:

Standardized residuals are available using the R command rstandard ().
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Residuals vs. Leverage Plot

Plotting standardized residuals against leverage values provides a graphical tool for detecting
outliers. High leverage points have a strong influence on the regression fit. High leverage values
with standardized residuals close to 0 are good leverage points, and high leverage values with
large standardized residuals are bad leverage points.

fit = Im(score ~ STR + english + lunch, data = CASchools)
plot(fit, which = 5)

Residuals vs Leverage
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Im(score ~ STR + english + lunch)

The plot indicates that some observations have a higher leverage value than others, but none
of these have a large standardized residual, so they are not bad leverage points.

Here is an example with two high leverage points. Observation ¢ = 200 is a good leverage
point and ¢ = 199 is a bad leverage point:

## simulate regressors and errors

X = rnorm(250)

u = rnorm(250)

## set some unusual obserwvations manually
X[199] 6

X [200]
u[199]
u[200]
## define dependent wvariable
Y=X+u

6
5
0
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## residuals vs leverage plot
plot(Im(Y ~ X), which = 5)

Residuals vs Leverage
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The plot also shows Cook’s distance thresholds. Cook’s distance for observation i is defined
as
D — (ﬂ(—i) _ﬁ) X X(ﬁ(—i) _ﬁ)
¢ ksZ ’
where R
P 2 / —1 U;
By —B= (XXX

Here, B(—z’) is the i-th leave-one-out estimator (the OLS estimator when the i-th observation
is left out).
This principle is called Jackknife because it is similar to the way a jackknife is used to

cut something. The idea is to “cut” the data by removing one observation at a time and
then re-estimating the model. The impact of cutting the i-th observation is proportional to

;[ (1= hy).
We should pay special attention to points outside Cook’s distance thresholds of 0.5 and 1 and
check for measurement errors or other anomalies.
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Jackknife Standard Errors

Recall the heteroskedasticity-robust White estimator for the meat matrix Q = E[u?X,X/] in
the sandwich formula tor the OLS variance:

If there are leverage points in the data, their presence might have a large influence on the
estimation of Q.

An alternative way of estimating the covariance matrix is to weight the observations by the

leverage values:
n ~0

Q. . =— ——X. X
jack n Z:ZI (1 _ h“>2 i
Observations with high leverage values have a small denominator (1 — h;;)? and are therefore
downweighted, which makes this estimator more robust to the influence of leverage points.

The full jackknife covariance matrix estimator is conventionally labeled as the HC3 estima-
tor:

f/’\'ack = f/'\hc?) = (X,X)_l ﬁjack (X/X>_1 .

j
There is also the HC2 estimator, which uses a2(1 — h;;) instead of @?/(1 — h;;)?, but this is

i
less common.

The HC3 standard errors are:

Sehc3(5j) = [?hc3]jj'

If you have a small sample size and you are worried about influential observations, you should
use the HC3 standard errors instead of the HC1 standard errors.

To display the HC3 standard errors in the regression table, you can use modelsummary (fit,
vcov = "HC3").

6.8 Cluster-robust Inference

Recall that in many economic applications, observations are naturally clustered. For instance,
students within the same school, workers in the same firm, or households in the same village
may share common unobserved factors that induce correlation in their outcomes.
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As discussed in Section 5, for clustered observations we can use the notation (X,,,Y;,), where
the linear regression equation is:

_x L _
V=X B+tu, i=1..,n, g=1..,G

Under independence across clusters but allowing for arbitrary correlation within clusters, the
OLS estimator remains unbiased, but its standard variance formula is no longer valid. As we
saw in Section 5, the conditional variance

Var(B| X) = (X’X) ' X'DX(X'X)?

satisfies

x|.

X'DX = f:l E [( 2 Xiguig) ( zg;Xiguig>,
= - =

Cluster-robust Standard Errors

When observations within clusters are correlated, using ordinary standard errors (even
heteroskedasticity-robust ones) will typically underestimate the true sampling variability of
the OLS estimator.

To account for within-cluster correlation, we use cluster-robust standard errors. The key
insight is to estimate the middle part of the sandwich formula above by allowing for arbitrary
within-cluster correlation, while maintaining the independence assumption across clusters.

The cluster-robust variance estimator is:

Voro = (X'X)™! EG: (iXigﬁ'ig> <§;Xigﬁig>/(X/X)1.
=1 = =

=1

This estimator, also known as the clustered sandwich estimator, allows for arbitrary cor-
relation of errors within clusters, including both heteroskedasticity and serial correlation. Like
the HC estimators, it is consistent under large-sample asymptotics.

Finite Sample Correction

Similar to the HC1 correction for heteroskedasticity, a small-sample correction for the cluster-

robust estimator is commonly applied:
= G n—1 =
|4 = —V
CRL= G _1 p_f VCRO
where G is the number of clusters, n is the total sample size, and k is the number of regressors.

The corresponding cluster-robust standard errors are:

5601«21(@) = [?CRl]jj'
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When to Cluster

You should use cluster-robust standard errors when:

1. There’s a clear grouping structure in your data (schools, villages, firms, etc.)
2. You expect errors to be correlated within these groups
3. You have a sufficient number of clusters (generally at least 30-50)

Common examples include: - Student-level data clustered by school or classroom - Firm-level
data clustered by industry - Individual-level data clustered by geographic region - Panel data
clustered by individual or time period

Implementation in R

The CASchools dataset contains information on 420 California Schools from 45 different coun-
ties, which can be viewed as clusters.

The fixest package makes it easy to implement cluster-robust standard errors:

feols(score ~ STR + english, data = CASchools, cluster = "county") [|> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Clustered (county)
Estimate Std. Error t value Pr(>|tl)
(Intercept) 686.032245 15.802838 43.41196 < 2.2e-16 *x*x

STR -1.101296 0.754387 -1.45986 0.15143
english -0.649777  0.030230 -21.49427 < 2.2e-16 ***
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

RMSE: 14.4  Adj. R2: 0.423681

After accounting for clustering, the coefficient on STR is no longer statistically significant.

You can also use the modelsummary () function to compare the same regression with different
standard errors:

fitl = feols(score ~ STR + english, data = CASchools)

## List of standard errors:

myvcov = list("IID", "HC1", "HC3", ~county)

modelsummary(fitl, stars = TRUE, statistic = "conf.int", vcov = myvcov)
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(1)

(2)

(3)

(4)

(Intercept) 686.032%*+* 686.0327%** 686.0327%** 686.0327%**
[671.464, 700.600] [668.875, 703.189] [668.710, 703.354] [654.969, 717.095]

STR —1.101** —1.101* —1.101* —1.101
[—1.849, —0.354]  [-1.952, —0.250]  [—1.960, —0.242] [—2.584, 0.382]

english —0.650%*** —0.650%** —0.650%** —0.650%**
[-0.727, —0.572]  [-0.711, —0.589]  [—0.711, —0.588]  [—0.709, —0.590]

Num.Obs. 420 420 420 420

R2 0.426 0.426 0.426 0.426

R2 Adj. 0.424 0.424 0.424 0.424

AIC 3439.1 3439.1 3439.1 3439.1

BIC 3451.2 3451.2 3451.2 3451.2

RMSE 14.41 14.41 14.41 14.41

Std.Errors IID HC1 HC3 by: county

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Challenges with Cluster-robust Inference

The cluster-robust variance estimator relies on having a large number of clusters. With few
clusters (generally G < 30), the estimator may be biased downward, leading to confidence
intervals that are too narrow and overly frequent rejection of null hypotheses.

To account for high leverage points, the CR3 correction is similar to HC3 and applies a leverage
adjustment at the cluster level:

ng ng ~

—~ G ﬁi U,
Vors = (X'X)7' ) (ZX"H —;]Lig> (ZX"H —

g=1 =1 i=1 9

)/(X’X)—l.

6.9 R-codes

metrics-sec06.R
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Part 11l

Panel Data Methods
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7 Fixed Effects

library(fixest)
library (modelsummary)
library (AER)

7.1 Panel Data

In panel data, we observe multiple individuals or entities over multiple time periods. Each
observation is indexed by both individual ¢ = 1,...,n and time period t = 1,...,T. We denote
a variable Y for individual ¢ at time period ¢ as Y},.

Unlike cross-sectional data (which observes multiple individuals at a single point) or time series
data (which tracks a single individual over time), panel data combines both dimensions.

Economic applications include:

e Growth: GDP and productivity across countries over time

e Corporate finance: Firm investment and capital structure dynamics

e Labor economics: Individual wage trajectories and employment patterns

o International trade: Bilateral trade flows between country pairs over years

In the case of multiple regressor variables, we denote the j-th regressor for individual ¢ at time

period t as X ;;, where j =1,... k.

If each individual has observations for all time periods, we call this a balanced panel. The
total number of observations is nT'.

In typical economic panel datasets, we often have n > T' (more individuals than time points)
or n &~ T (roughly the same number of individuals as time points).

When some observations are missing for at least one individual or time period, we have an
unbalanced panel.
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7.2 Pooled Regression

Model Setup
The simplest approach to panel data is the pooled regression, which treats all observations
as if they came from a single cross-section.

Consider a panel dataset with dependent variable Y;, and k independent variables
Xl,it’ s 7Xk?,’it fOl" /L == ]., ces ,n and t = 17 e 71—1.

The first regressor variable represents an intercept (i.e., X;; = 1). We stack the regressor
variables into the k x 1 vector:

1
X = X?’Zt
Xk,zt

Pooled Panel Regression Model
The pooled linear panel regression model equation for individual ¢ = 1,...,n and time t =
1,...,T is:

Yy = X0B + uy,
where 8 = (84, ..., ;)" is the k x 1 vector of regression coefficients and u,, is the error

term for individual 7 at time ¢.

It is not reasonable to assume that Y, and Y, are independent. Therefore, the random
sampling assumption (A2) needs to be adapted to the cluster level. Instead of (A2), we
assume that

(Ylv 7}/iT7X;17 o ;T)

K3
are i.i.d. draws from their joint population distribution for ¢ =1, ... n.

This implies that observations across different individuals are independent. However, observa-
tions within an individual across time points may be dependent.

Therefore, to conduct inference about the population, we require n to be large, while T can
be small or large.

;s and X, can now be correlated, we require that the regressors are
strictly exogenous, meaning Flu;|X] = 0. Therefore, assumption (Al) must be replaced
by:

Furthermore, while X

Eluy|X;,....X;7] =0.
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Pooled OLS

The pooled OLS estimator is:
R n T -1 n T
ﬂpool = ( thX;t> ( Xitnt) .
i=1 t=1 i=1 t=1

This can be written in matrix notation, where we define the pooled regressor matrix X of
order nT x k and the dependent variable vector Y of order nT x 1:

B = (X'X)'X'Y.
Pooled OLS is unbiased and consistent under the following assumptions:
Pooled OLS Assumptions

e (A2-pool) {(Y;1,.... Y, X}y, ... X )}, is an i.i.d. sample
¢ (A3-pool) kur(Y;) < oo and kur(X; ;) < oo
e (A4-pool) 2?11 Z?:l X,;, X, is invertible

Under these assumptions, the asymptotic distribution of the pooled OLS estimator is:
- d
\/ﬁ('Bpool —,B) — N(07Q719Q71>, as n — o9,

T , T T ,
where Q = E(% thl X X},) and = E((% thl Xit“it)(% thlxituit) )-

To illustrate, consider the Grunfeld dataset, which provides investment, capital stock, and
firm value data for 10 firms over 20 years:

data(Grunfeld, package = "AER")

head (Grunfeld)

invest value capital firm year
1 317.6 3078.5 2.8 General Motors 1935
2 391.8 4661.7 52.6 General Motors 1936
3 410.6 5387.1 156.9 General Motors 1937
4 257.7 2792.2 209.2 General Motors 1938
5 330.8 4313.2 203.4 General Motors 1939
6 461.2 4643.9 207.2 General Motors 1940
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fit_pool = lm(invest ~ capital, data = Grunfeld)
fit_pool

Call:
lm(formula = invest ~ capital, data = Grunfeld)

Coefficients:
(Intercept) capital
8.5651 0.4852

Cluster-Robust Inference

Let’s visualize the data:

plot(invest ~ capital, col = as.factor(firm), data = Grunfeld)

legend ("bottomright", legend = unique(Grunfeld$firm), col = 1:10, pch = 1,
title = "Firm", cex = 0.8)

abline(fit_pool, col = "red")
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The observations appear in clusters, with each firm forming a cluster. This suggests potential
problems with the pooled approach if we use classical standard errors.

The error covariance matrix for panel data has a block-diagonal structure:

D, 0 .. 0
D=Vaux]=| % P2 - 0
0 0 .. D

n

where D, is the T' x T' covariance matrix for individual i:

E[U?JX] E[ui,lui,2|X] E[ui,lui,T’X]
D — E[ui,Qui,l | X] E[U122|X] E[umui,T’X]
E[“i,T“i,l’X] E[ui,Tui,2|X] E[U?qu

The variance of the pooled OLS estimator is:

~

Var[B,,,|X] = (X"X)~1(X'DX)(X"X)~!

The cluster-robust covariance matrix estimator is:
/

n T T
Vo = 07 3 (X ) (LX) 02
1 t=1 t=1

1=
We can implement this using the fixest package:

# Pooled regression with fixest
fit_pool_fe = feols(invest ~ capital, data = Grunfeld)

# Incorrect Classical Standard Errors
summary (fit_pool_fe)

OLS estimation, Dep. Var.: invest
Observations: 220
Standard-errors: IID

Estimate Std. Error t value Pr(>ltl)
(Intercept) 8.565056 13.967368 0.613219 0.54037
capital 0.485191 0.035861 13.529645 < 2.2e-16 **x*
Signif. codes: O '*x*xx' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 154.9 Adj. R2: 0.453935
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# Cluster-robust standard errors (clustered by firm)
summary (fit_pool_fe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>ltl)
(Intercept) 8.565056 25.729726 0.332886 0.7460942
capital 0.485191 0.132374 3.665310 0.0043507 *x*

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 154.9  Adj. R2: 0.453935

7.3 Time-invariant Regressors

Consider a simple panel regression model:

Yiy = B1+ B Xy + BsZ; + uyy (7.1)
Here, Z, represents a time-invariant variable specific to individual ¢ (e.g., gender, ethnicity,
birthplace).

With the usual exogeneity condition Elu,|X;,, Z;], the coefficient 3, can be interpreted as the
marginal effect of X, on Y,, holding Z, constant.

The key advantage of panel data is that we can control for a time-invariant variable Z; even
if it is unobserved.

To see this, consider data from just two time periods, ¢ = 1 and ¢ = 2. Taking the difference
between time periods:

Yio =Yy = (81 + BoXig + B3Z; + tye) — (By + Ba Xy + B3Z; + uyy)
= Bo(Xjo — Xi1) + (use — uyy)

This first-differencing transformation eliminates both the intercept 8; and the effect of the
time-invariant variable (57;.

The coefficient 3, is simply the regression coefficient from the first-differenced model:
AY, = B,AX, + Au,,
where AY, =Y, —Y,;, AX, = X,5 — X1, and Au; = u;o — u;y-

(2
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Therefore, 3, can be estimated from a regression of AY; on AX, without intercept. We do

not need to observe Z; to estimate (3, from model Equation 7.1.

We can combine the terms 3, and 357, into a single individual fixed effect o; = 3, + 55Z;.
This term represents all unobserved, time-constant factors that affect the dependent variable.

7.4 The Fixed Effects Model

Let’s formalize the fixed effects model. Consider a panel dataset with dependent variable
Y, a vector of k independent variables X,;, and an unobserved individual fixed effect o for
i=1,..,nand t=1,...,T.

Fixed Effects Regression Model

The fixed effects regression model for individual ¢ = 1,...,n and time ¢t =1, ..., T is:
Vi = o + X3B + uy (7.2)
where 8 = (B, ..., 8;)" is the k x 1 vector of regression coefficients, «; is the individual fixed

effect, and w,;, is the error term.

Identification Assumptions

To identify 3, as the ceteris paribus marginal effect of X ;; on Y};, holding constant the fixed
effect a; and the other regressors, we need to make some assumptions.

1. Strict exogeneity conditional on fixed effects: E[u;|X,,,...,X,;p,a;] = 0 for all
t. This means that the error w,, is uncorrelated with the regressors in all time periods,
conditional on the fixed effect.

2. Time-varying regressors: There must be variation in X, over time within each
individual. Time-invariant regressors are absorbed by the fixed effect o; and cannot be
separately identified.

If strict exogeneity is violated (e.g., due to feedback effects where Y;, affects future values of
X, for s > t), then the fixed effects estimator will be inconsistent. In this case, dynamic panel
data models may be appropriate.
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First-Differencing Estimator

As shown earlier, we can eliminate the fixed effects by taking first differences. Using AY;, =
Y, — Y, 1 as the dependent variable and inserting model Equation 7.2, we get:

AY;, = (AX,;,)'B + Auy, (7.3)
We can then apply OLS to this transformed model:
# Create first differences manually for demonstration
diffcapital = c(aggregate(Grunfeld$capital, by = list(Grunfeld$firm), FUN = diff)$x)

diffinvest = c(aggregate(Grunfeld$inv, by = list(Grunfeld$firm), FUN = diff)$x)

# First-difference regression
Im(diffinvest ~ diffcapital - 1)

Call:
Im(formula = diffinvest ~ diffcapital - 1)

Coefficients:

diffcapital
0.2307

A problem with this differenced estimator is that the transformed error term Aw,, defines an
artificial correlation structure, which makes the estimator non-optimal. Au; ;1 = u; 41 —u;,
is correlated with Au, ; = u; ; —u, ;_; through u, ;.

Within Estimator

An efficient estimator can be obtained by a different transformation. The idea is to consider
the individual specific means

Taking the means over ¢ of both sides of Equation 7.2 implies

Y, =, + Y;ﬁ + ;.. (7.4)
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Then, we subtract these means from the original equation:
Yy =Y, =X, —X.)'B+ (uy — ;)
The fixed effect «; drops out.
The deviations from the individual specific means are called within transformations:
V=Y, =Y, Xy=X,—-X,, iy;=u,—71,

The within-transfromed model equation is
. ./
Yy = Xit:B + Uy (7-5)

The within estimator (also called the fixed effects estimator) is:
fo- (L %) ()
i=1 t= i=1 t=

# Fixed effects estimation using fixest
fit_fe = feols(invest ~ capital, fixef = "firm", data = Grunfeld)
fit_fe$coefficients

capital
0.3707023

Fixed Effects Regression Assumptions

. (Al-fe) E[u Zt\X X o] = 0.

o (A2-fe) (o v Yo, Xy, o, Xop)y is an 1.4.d. sample.
o (A3-fe) kur( ) < 00, kur(uy) < oo.

o (Ad-fe) 2?11 thl XitXit is invertible.

(Al-fe) is the same as (Al-pool), but now we condition on the unobserved fixed effect ;.

(A2-fe) is a standard random sampling assumption indicating that individuals ¢ = 1, ..., n are
randomly sampled.

(A3-fe) ensures finite fourth moments, which is a requirement for asymptotic normality of the
estimator.

(A4-fe) is satisfied if there is no perfect multicollinearity and if no regressor is constant over
time for any individual.
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Under (A2-fe), the collection of the within-transformed variables of individual ¢,

(Y1, - Y, Xigs oo s Xy Uig s e s uiT)v

forms an i.i.d. sequence for i = 1,...,n.

The within-transformed variables satisfy (Al-pool)—(A4-pool), which mean that its asymptotic
distribution is:

\/E(Bfe —B) i> NO,WeWw-1), as n — 0o,

T v </ T 3 . T v .
where W = E(% Zt:1 X X;y) and ¥ = E((% thl Xit“it)(% Zt:1 Xipti)')-

Hence, we can apply the cluster-robust covariance matrix estimator of the pooled regression
to the within-transformed variables:

# Inference with cluster-robust standard errors
summary (fit_fe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11
Standard-errors: Clustered (firm)
Estimate Std. Error t value Pr(>|t])

capital 0.370702 0.064785 5.72203 0.0001924 *x*x
Signif. codes: 0O '*x*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 58.9 Adj. R2: 0.91717

Within R2: 0.659603

Dummy Variable Approach

An equivalent way to estimate the fixed effects model is to include a dummy variable for
each individual. This approach is known as the least squares dummy variable (LSDV)
estimator:

# Equivalent to fit_fe
fit_fe_lsdv = lm(invest ~ capital + factor(firm) - 1, data = Grunfeld)
fit_fe_lsdv$coefficients

capital factor(firm)General Motors
0.3707023 367.6436372
factor(firm)US Steel factor(firm)General Electric
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301.1715657 -46.0502428
factor(firm)Chrysler factor(firm)Atlantic Refining

41.1776965 -118.6424177

factor (firm) IBM factor (firm)Union 0il
16.7523079 -69.1553441
factor(firm)Westinghouse factor(firm)Goodyear
11.1445528 -68.5432229

factor (firm)Diamond Match factor(firm)American Steel
0.8819721 -18.3676804

The coefficient on the regressor capital is the same as in the within estimator. However, the
LSDV approach becomes computationally intensive with many individuals, and the standard
errors need to be adjusted for clustering.

7.5 Time Fixed Effects

While individual fixed effects control for unobserved heterogeneity across individuals, we might
also want to control for factors that vary over time but are constant across individuals (e.g.,
macroeconomic conditions, policy changes).

The time fixed effects model is:

Yip = A+ X0B + uyy (7.6)

where ), captures time-specific effects. Similar to individual fixed effects, we can rewrite this
model by demeaning across time:

Vi =Y = (X5 = X)'B+ (uy — )

where the time-specific means are:

SN

_ 1 & _
Y-t:*ZYita X, =
N

Hence, we regress Y;, —Y , on X,, — X, to estimate B in Equation 7.6.
# Time fixed effects

fit_timefe = feols(invest ~ capital, fixef = "year", data = Grunfeld)
summary (fit_timefe, cluster = "firm")
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OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: year: 20
Standard-errors: Clustered (firm)
Estimate Std. Error t value Pr(>|tl)

capital 0.539676  0.163321 3.30438 0.0079544 *x
Signif. codes: O '*x*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 151.1 Adj. R2: 0.430515

Within R2: 0.450115

7.6 Two-way Fixed Effects

We can combine both individual and time fixed effects in a two-way fixed effects model:

Y=o, + A+ X[,B+uy, (7.7)

This model controls for both individual-specific and time-specific unobserved factors. To esti-
mate it, we apply a two-way transformation that subtracts individual means, time means, and
adds back the overall mean:

Y=Y, =Y, +Y

Yit:
Xit:Xit_ _y-t +X

ol

7

To see why this is useful, consider the following transformations applied to the left-hand side
of Equation 7.7:

¢ Individual specific mean:
Y, =a,+ X+ X,B+7,,

< T
where A = Do At
e Time specific mean:

— l n
where @ = > . ;.
e Total mean:

135



The transformed model is: ) =,
}/tit - thﬂ + u’Lt

where ;, = u;; —u; — U, + u.

Hence, we estimate B by regressing Y;;, on X it

# Two-way fixed effects

fit_2wayfe = feols(invest ~ capital, fixef = c("firm", "year"), data

summary (fit_2wayfe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11, year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>ltl)
capital 0.40875 0.062522 6.53767 6.5744e-05 ***
Signif. codes: O 'sx*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 54.7 Adj. R2: 0.921459

Within R2: 0.60632

For inference, we use cluster-robust standard errors:

# Cluster-robust standard errors
summary (fit_2wayfe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11, year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>ltl)
capital 0.40875 0.062522 6.53767 6.5744e-05 ***
Signif. codes: O 'sx*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 54.7 Adj. R2: 0.921459

Within R2: 0.60632
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OLS-1ID OLS-CL FE Time FE Two-way FE

(Intercept) 8.565 8.565

(13.967)  (25.730)
capital 0.485%F*%  (0.485%F  (0.371***  0.540** 0.409%**

(0.036) (0.132) (0.065) (0.163) (0.063)
Num.Obs. 220 220 220 220 220
R2 0.456 0.456 0.921 0.483 0.932
R2 Adj. 0.454 0.454 0.917 0.431 0.921
R2 Within 0.660 0.450 0.606
R2 Within Adj. 0.658 0.447 0.604
AIC 2847.2 2847.2 2441.9 2874.4 2447.2
BIC 2854.0 2854.0 2482.7 2945.6 2552.4
RMSE 154.91 154.91 58.93 151.14 54.70
Std.Errors IID by: firm by: firm  by: firm by: firm
FE: firm X X
FE: year X X

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
7.7 Comparison of Panel Models

Let’s compare the different panel regression approaches:

# Create a list of models
models = list(
"OLS-IID" = feols(invest ~ capital, data = Grunfeld),
"OLS-CL" = feols(invest ~ capital, data = Grunfeld, cluster = "firm"),

"FE" = feols(invest ~ capital, fixef = "firm", data = Grunfeld, cluster = "firm"),
"Time FE" = feols(invest ~ capital, fixef = "year", data = Grunfeld, cluster = "firm"),
"Two-way FE" = feols(invest ~ capital, fixef = c("firm", "year"), data = Grunfeld, cluster

# Generate the comparison table with clustered standard errors
modelsummary(models, stars = TRUE)
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7.8 Panel R-squared

In panel data models with fixed effects, two different R-squared measures provide distinct
information about model fit:

Within R-squared

The within R-squared measures the proportion of within-individual variation explained by the
model. For the three different fixed effects specifications, the within R-squared is defined as
follows:

e For individual fixed effects:

n T . ./ o~
Zizl thl(y;t - Xitﬂ)2

2

A N

e For time fixed effects:
Re, =1 i S = Vo= (X~ X B
i Do (Vi = Y0)?
o For two-way fixed effects:
n T - /oA
R, =1— Y 2 Ve — XuB)?

n T .
Zizl Zt:l Y;%

In the panel models for the Grunfeld data, the individual fixed effects model has the highest
within R-squared (0.660), suggesting that within-firm variations in capital explain 66% of
within-firm variations in investment.

This drops to 0.450 in the time fixed effects model, indicating that year-specific factors share
substantial variation with capital stock within each year.

The higher within R-squared for individual fixed effects (0.660) compared to time fixed effects
(0.450) suggests that firm-specific characteristics play a greater role in explaining variation in
investment than year-specific factors.

The two-way fixed effects model shows an intermediate within R-squared (0.606). This model
controls for more confounding factors from both dimensions, resulting in an estimate that is
likely closer to the true causal effect of capital on investment, though with somewhat reduced
statistical power.
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Overall R-squared

The overall R-squared measures how well the complete model (including fixed effects) explains
the total variation:

PPN v/ v/ T 71

Eizl Zt:1< it Y)

Here, V;, is the fitted value of the corresponding model.

The overall R-squared values reveal how different specifications explain investment variation:
pooled OLS (45.6%), firm fixed effects (92.1%), time fixed effects (48.3%), and two-way fixed
effects (93.2%). The large jump when adding firm fixed effects, compared to the minimal
improvement from time fixed effects, confirms that firm-specific characteristics are far more
important determinants of investment behavior than year-specific factors.

The within R-squared is typically more relevant because it isolates the relationship of inter-
est after controlling for unobserved heterogeneity. However, if you're interested in overall
predictive power, the overall R-squared provides that information.

Fitted Values

The overall R-squared requires the computation of the fitted values }A’it. To compute them, we
require some estimates or averages of the fixed effects themselves.

e For individual fixed effects:

e For time fixed effects:

e For two-way fixed effects:

where
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While these fixed effects estimates are useful for calculating fitted values, they are not recom-
mended for direct interpretation. Fixed effects capture all time-invariant (or unit-invariant)
factors, observed and unobserved, making them a “black box” rather than specific causal
parameters.

7.9 Application: Traffic Fatalities

To illustrate the importance of fixed effects in empirical work, let’s examine how government
policies affect traffic fatalities. We’ll use the Fatalities dataset from the AER package, which
contains panel data on traffic fatalities, drunk driving laws, and beer taxes for U.S. states from
1982 to 1988.

data(Fatalities, package = "AER")
# Create the fatality rate per 10,000 population
Fatalities$fatal_rate = Fatalities$fatal / Fatalities$pop * 10000

Cross-sectional Analysis

First, let’s examine the relationship between beer taxes and traffic fatality rates using pooled

OLS:

fatal cs = feols(fatal rate ~ beertax, data = Fatalities, cluster = "state")
summary (fatal_cs)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Standard-errors: Clustered (state)
Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.853308 0.118519 15.63719 < 2.2e-16 *x**
beertax 0.364605 0.119686 3.04636 0.0037916 **
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.542116 Adj. R2: 0.090648

Surprisingly, we find a positive relationship between beer taxes and fatality rates. This coun-
terintuitive result likely stems from omitted variable bias.
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Fixed Effects Approach
Now, let’s use the panel structure to control for unobserved state-specific factors:

# State fixed effects model

fatal fe = feols(fatal rate ~ beertax, fixef = '"state", data = Fatalities, cluster = "state"

summary (fatal_fe)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Fixed-effects: state: 48
Standard-errors: Clustered (state)
Estimate Std. Error t value Pr(>|t])

beertax -0.655874  0.291856 -2.24725 0.029358 *
Signif. codes: 0O '*x*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.17547 Adj. R2: 0.889129

Within R2: 0.040745

With state fixed effects, the coefficient becomes negative, aligning with our theoretical expec-
tation that higher beer taxes should reduce drunk driving and fatalities.

Let’s add time fixed effects

# State fixed effects model
fatal_twoway = feols(fatal_rate ~ beertax, fixef = c("state", "year"), data = Fatalities,
summary (fatal_twoway)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Fixed-effects: state: 48, year: 7
Standard-errors: Clustered (state)
Estimate Std. Error t value Pr(>|t|)
beertax -0.63998 0.357078 -1.79227 0.079528 .
Signif. codes: O '*x*xx' 0.001 '#«x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.171819 Adj. R2: 0.891425
Within R2: 0.036065

Finally, let’s add control variables that are neither constant over time nor across states:

141

cli



Fatalities$punish = ifelse(Fatalities$jail == "yes" | Fatalities$service == "yes",
"yeS”, llnoll)
fatal_full = feols(fatal_rate ~ beertax + drinkage + punish + miles + unemp + log(income), f
data = Fatalities, cluster = "state")

NOTE: 1 observation removed because of NA values (RHS: 1).

summary (fatal_full)

OLS estimation, Dep. Var.: fatal_rate
Observations: 335
Fixed-effects: state: 48, year: 7
Standard-errors: Clustered (state)
Estimate Std. Error t value Pr(>ltl)

beertax -0.45646674 0.30680756 -1.487795 0.14348400
drinkage -0.00215674 0.02151945 -0.100223 0.92059358
punishyes 0.03898148 0.10316089 0.377871 0.70722783

miles 0.00000898 0.00000710 1.265052 0.21208923

unemp -0.06269441 0.01322938 -4.739031 0.00002021 *x*x*
log(income) 1.78643540 0.64339251 2.776587 0.00786399 *x*
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.140556 Adj. R2: 0.926185

Within R2: 0.356781

This comprehensive model still produces a negative coefficient, though effect becomes insignif-
icant with the addition of control variables.

# Create model list
fatal _models = list(
fatal_cs,
fatal_fe,
fatal_twoway,
fatal full
)
# Generate comparison table
modelsummary(fatal_models, stars = TRUE)

The changing sign of the beertax coeflicient across specifications illustrates the importance of
controlling for unobserved heterogeneity in panel data:
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(1) (2) 3) (4)

(Intercept) 1.853*#*
(0.119)
beertax 0.365%*  —0.656* —0.640+ —0.456
(0.120) (0.292) (0.357) (0.307)
drinkage —0.002
(0.022)
punishyes 0.039
(0.103)
miles 0.000
(0.000)
unemp —0.063***
(0.013)
log(income) 1.786**
(0.643)
Num.Obs. 336 336 336 335
R2 0.093 0.905 0.909 0.939
R2 Adj. 0.091 0.889 0.891 0.926
R2 Within 0.041 0.036 0.357
R2 Within Adj. 0.037 0.033 0.343
AIC 546.1 —117.9 —120.1 —243.9
BIC 553.7 69.1 89.9 —15.1
RMSE 0.54 0.18 0.17 0.14
Std.Errors by: state by: state by: state by: state
FE: state X X X
FE: year X X

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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1. In the pooled model, the positive coefficient might reflect that states with higher fatality
rates tend to implement higher beer taxes as a policy response.

2. Once we control for state fixed effects, we isolate the within-state variation and find the
expected negative relationship: when a state raises its beer tax, fatality rates decrease.

3. Adding year fixed effects accounts for national trends in fatality rates, such as changes
in vehicle safety technology or nationwide campaigns against drunk driving.

4. In the full model with additional controls, the beer tax coefficient remains negative but
loses statistical significance. This suggests that its effect may be partially captured by
other policy variables or that we lack statistical power to precisely estimate the effect
when including multiple controls.

7.10 R-codes

metrics-sec06.R
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Part IV

Causal Inference
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8 Endogeneity

8.1 The Linear Model and Exogeneity

So far we have written the conditional mean of an outcome Y; as a linear function of observed
covariates X:

Elu; | X;] =0 (A1)

If (A1) holds, then E[Y; | X,] = X8, which makes X8 the best predictor of Y; given X,.
Each coeflicient 3; is a conditional marginal effect:

Interpretation: “Among individuals who share the same values of all included
control variables, those whose X,; is higher by one unit have, on average, a'Y; that
is higher by B;.”

So far the course has provided three empirical tactics to narrow the gap between correlation
and causation:

e Add observed confounders. Whenever economic theory identifies a variable that influ-
ences both X;; and Y}, we try to measure it and augment X .

o Exploit panel structure. With panel data data we include individual and time fixed
effects to control for unobserved factors that are constant across individuals or time
periods.

e Use flexible functional forms. Polynomials, interactions, or other transformations can
absorb nonlinearities that would otherwise leak into ;.

Even after taking these steps, important issues remain. For example, there may be reverse
causality, which occurs when Y, feeds back into X,. Additionally, there may be control variables
with a dual role that act as both confounders and mediators/colliders simultaneously.

Nothing in (A1) — nor in the additional assumptions (A2)—(A4) about i.i.d. sampling, finite
moments, and full rank — guarantees that 3, is causal. It represents only a conditional
correlative relationship unless X;; is uncorrelated with all unobserved determinants of Y;.
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8.2 Conditional vs Causal Effects: Price Elasticities

Economists often want causal price effects, not merely conditional associations. Consider
the following structural system in a competitive market written in logs so that slopes are
elasticities:

Demand: log(Q;) = B, + B, log(F;) + u;,
Supply (pricing rule): log(P;) = vy + 72 log(C;) + v3u; + n;-

We have 3, < 0 by theory.

o Index i denotes a market (e.g., city or store) observed at a single point in time; the data
are cross-sectional and i.i.d.

o (), is the total quantity demanded in market i.

e P, is price.

e (; is the exogenous wholesale cost of the product.

o wu,; captures consumers’ taste shocks unobserved by the econometrician (though retailers
may infer them and respond when setting prices); 7, captures supply-side shocks.

Because higher demand (large u,) in a particular store leads retailers to charge higher prices
(75 > 0), we have Cov(log(P;),u;) > 0. Hence, (A1) is violated in the demand equation.

Suppose a researcher estimates
log(Q;) = oy + aylog(P)) +¢;

or
log(Q;) = 0, + 0y1og(P;) + 0310g(C;) + v;

Both regressions (one simple and one with wholesale-cost controls) deliver conditional marginal
effects a, or 6,. They answer

“Among markets with the same wholesale cost (and any other included controls),
how does observed quantity co-move with observed price?”

But the policy-relevant question is different:

“By how much would quantity fall if we exogenously raised price — say, via a 1%
tax — holding everything else constant?”

That causal elasticity is 3,. Because P, responds to u;, OLS estimates suffer simultaneity bias
and o or 0, generally differ from f,.

Endogeneity arises because we want the parameter to be causal, not because the regression
is mechanically misspecified. Even if the conditional mean is correctly linear, interpreting /3,
causally implies Cov(log(P;),u;) # 0.
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8.3 Measurement Error

Another important source of endogeneity arises from measurement error. Suppose we consider
the structural model:

YO =6+ B,X0+uf, i=1,....,n, u?~iid.(0,02),

but we do not observe the latent variables V! and X? directly. Instead, we observe:

Y, =Y +n, X,=X]+(,

where n; ~ i.i.d.(O,U%) and (; ~ i.i.d.(O,ag) denote classical measurement errors that are
assumed independent of each other and of X?,Y?, and u.

Plugging the observed variables into the structural equation yields:

Y —n; = By + Bo(X; — ;) + ud,

which can be rearranged as:

Y; =By + BoXi + (uf +1m; — BoGy) -

composite error term

The composite error term is problematic:

E[u? +m; — B2G; | X;] # 0,

because X, contains (;, which also appears in the error term. This violates the exogeneity
condition, resulting in a biased and inconsistent OLS estimator. Specifically, the bias tends
to attenuate the coefficient estimate 3, toward zero (known as attenuation bias). For positive
true coefficients, this leads to underestimation; for negative coefficients, overestimation.

By contrast, if only the dependent variable Y, is measured with error, OLS remains unbiased,
although the variance of the error term increases.
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8.4 Endogeneity as a Violation of (Al)

Formally, a regressor X;; is endogenous if it correlates with the structural error term:
Cov(Xjj,u;) #0 = Eluy [ X;] #0

When this happens, OLS estimates remain descriptive but lose their causal interpretation.
Whether you care depends on your goal:

Purpose Is (A1) needed? Parameter meaning
Prediction / No. Bias relative to causal truth is  Conditional marginal effect
description irrelevant if forecasting is the aim.

Causal policy Yes! You need E[u|X] =0 in the  Structural (causal) effect
evaluation causal sense, or an alternative

identification strategy.

8.5 Sources of Endogeneity

Besides the functional-form misspecification that we have already discussed in previous sec-
tions, there are four other common sources of endogeneity in practice:

Mechanism Typical manifestation

Omitted-variable bias Unobserved ability affects both schooling (X) and wages
)

Simultaneity / reverse Price and quantity determined jointly in markets

causality

Measurement error in X Measurement error inflates the variance of the regressor,
so OLS slopes are biased toward zero (attenuation bias)

Dual role controls A variable (e.g., health) acts as both confounder and
mediator/collider

All four cases yield E[u|X] # 0 and threaten causal inference.

We have R
E[BIX] = B+ (X'X)"'X'E[ulX] # .
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O Instrumental Variables

library(fixest)

In Section 8, we discussed endogeneity problems that lead to the inconsistency of the ordinary
least squares (OLS) estimator. One important solution is the instrumental variables (IV)
method, which allows for consistent estimation under certain conditions when regressors are
endogenous.

9.1 Endogenous Regressors Model

In most applications only a subset of the regressors are treated as endogenous.

Let’s assume that we have k endogenous regressors X, = (X,,...,X;.)” and r exogenous
regressors W, = (1, Wiy, ..., W,,.)".

In many practical applications the number of endogenous regressors k is small (like 1 or 2).
The exogenous regressors W, include the intercept, which is constant and therefore exogenous,
and all control variables for which we do not wish to interpret their coefficients in a causal
sense.

Consider the linear model equation:
Y, =XB+Wry+u;,, i=1,..,n. (9.1)
We have

o the dependent variable Y;

o the error term wu,;

« the endogenous regressors X,; = (X1, ..., X;1)’;

o the regression coefficients of interest B;

o the remaining r regressors W, = (1, W,,, ..., W,,)’, which are assumed to be exogenous
or simply control variables;

o the regression coefficients of the exogenous variables =.

Recall (A1), which is in this case given by E[u,;|X,, W;] = 0 but fails under endogeneity.

Since X is endogenous, we have E[X,u,;| # 0, which is a violation of (Al). Thus, the OLS
estimator B for B is inconsistent.
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0.2 Instrumental Variables Model

To consistently estimate 8 in the endogenous regressors model we require additional informa-
tion. One type of information which is commonly used in economic applications are what we
call instruments.

A vector of instrumental variables (IV) Z, = (Z,,...,Z,,,) for the endogenous variable
X,j is a variable that is

1) relevant, meaning that it has a non-zero conditional marginal effect on X, after con-
trolling for W,. That is, when regressing X;; on Z; and W, we have:

Xiyy=2Zimj+ Wimy; + vy, m; #0. (9.2)
2) exogenous with respect to the error term u,, i.e.:
E[Z;u;) = 0. (9.3)

This means Z; doesn’t have a direct causal effect on Y; after controlling for W, only an
indirect effect through the endogenous variable X,,.

If there are k endogenous regressors, we need at least k£ instruments. If m = k, we say that
the coefficients are exactly identified and if m > k we say that they are overidentified. Then
the relevance condition can be expressed jointly as:

rank(E[ZiX;D =k (9.4)

where Z, := (Z,,W))’.

Because my; # 0, some part of the variation in X;; can be explained by Z,. Because Z, is
exogenous, that part of the variation in X;; explained by Z, is exogenous as well and can be
used to estimate j; consistently.

Example 1: Years of schooling -> wage (returns to education). Ability bias: unobserved
ability affects both education choices and wages. Possible instruments for years of schooling:
distance to nearest colleges, school construction programs, quarter-of-birth, birth order.

Example 2: Market price -> quantity demanded (price elasticity of demand). Simultaneity:
quantity demanded feeds back into equilibrium price. Possible instruments for market price:
input-costs (e.g., raw materials, energy costs), weather conditions, tax changes.

Example 3: Police presence -> crime (deterrence effect). Reverse causality: more police
are deployed to high-crime areas. Possible instruments for police presence: election cycles,
sports/large public events, fire-fighters employment.

The idea of instrumental variable regression is to decompose the endogenous regressor X ;
into two parts: the “good” exogenous variation explained by the exogenous instruments Z,
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and further exogenous control variables, and the “bad” endogenous variation that is correlated
with the error term wu,.

This is exactly what is done in Equation 9.2: Zim,;+W/m,; is the part of X,; that is exogenous
and v;; is the part of X;; that is endogenous.

9.3 Two Stage Least Squares

The two stage least squares (TSLS) estimator exploits exactly the idea discussed above: first
extracting the exogenous part of the endogenous regressors explained by the instruments as
described in Equation 9.2 and then use only this exogenous part to estimate the causal rela-
tionship of interest.

The first stage regression is:

This equation is sometimes called the reduced form equation for X,;. We estimate this regres-
sion for j = 1,..., k and collect the fitted values

XZ]:Z:,%L]_FW’Z%Q]’ ]: 1,...,]{:, Z: 1,...,7’1;.

Let N
X’L':(Xi17"'7Xik>/7 Z.:17...,n.
be the vector of the fitted values for the k endogenous variables from the first stage.
Note that X ; is a function of Z, and W, and is therefore exogenous, i.e., uncorrelated with
ui.

Then, the second stage regression is
YV, =XB+Whn+uw, i=1..n. (9.5)

Note that w, absorbs v,;, the part of X;; that is endogenous. Therefore, the second stage re-
gression does not suffer any more from an endogeneity problem and can be used to consistently
estimate .

The OLS estimator of the second stage (Equation 9.5), denoted as BTS s is called the two-
stage least squares estimator for S.
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9.4 TSLS Assumptions

Al-iv) Elu;|W ;] = 0.
A2-iv) (Y, X[, W, Z])"" | is an i.i.d. sample.
A3-iv)

All variables have finite kurtosis.

(
(
(
(A4-iv) The instrument exogeneity and relevance conditions from Equation 9.3 and Equa-
tion 9.4 hold, and E[ZzZ;] is invertible

(Al-iv) is the exogeneity condition for the control variables W ,.
(A2-iv) is the standard random sampling assumption for the data.
(A3-iv) is the standard light-tails assumption, meaning large outliers are unlikely

(A4-iv) is the exogeneity and relevance condition for the instruments together with a condition
that excludes perfect multicollinearity

9.5 Large-Sample Properties of TSLS
Under assumptions (Al-iv)—(A4-iv), the TSLS estimator is consistent:

,BTSLS £> B (asn — o00).

Furthermore, the estimator is asymptotically normal:

ViBrsrs —B) > N(0,Visrs),

where
Vrsts = QxzQ72Q2x) ' Qx7Q750Q7,Q 7x(Qx,Q75Q 7x)
with , , ,
Qxz =EX,Z)). Qux=ElZX], Qz;=FEZZ] Q=E[ZZ)
The asymptotic variance can be estimated as:

n —1

-1 n n
—~ n 1 ~ 1 PO —~7 1 ~
Visps = n—k—r(n leixi> (n Z;uiXiXi> (n Z;Xin)

This is the HC1 covariance matrix estimator for the TSLS estimator. It can be used to
construct confidence intervals, t-tests, and F-tests in the usual way as discussed in previous
sections.
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9.6 Example: Return of Education

Consider a wage equation for a cross-section of 429 married women:
log(wage) = ) + Boeduc; + Bsexper; + B exper? + u;,
where

e wage is the wife’s 1975 average hourly earnings
e educ is her educational attainment in years
e exper are the actual years of her labor market experience

We use the dataset mroz available in this repository: link.

OLS yields:

feols(log(wage) ~ educ + exper + exper~2, data = mroz, vcov = "HC1")

OLS estimation, Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.522041 0.201650 -2.58884 9.9611e-03 *x*
educ 0.107490 0.013219 8.13147 4.7203e-15 *xx
exper 0.041567 0.015273 2.72156 6.7651e-03 *x*
I(exper~2) -0.000811 0.000420 -1.93108 5.4139e-02 .
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.663299 Adj. R2: 0.150854

If educ is correlated with omitted variables like ability or motivation, the estimated coefficient
for educ does not represent the causal effect of educ on wage.

Ability is an unobserved confounder that affects both educ and wage.

In the following, we assume that mother’s education (mothereduc) is a valid instrument for
educ in the wage equation because:

1) mothereduc should not appear in a wife’s wage equation

2) Instrument relevance: mothereduc should be correlated with educ: high educated mothers
typically have high educated daughters

3) Instrument exogeneity: assume that a woman’s ability and motivation are uncorrelated
with mothereduc
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The first stage regression is:

firststage = lm(educ ~ mothereduc + exper + I(exper~2), data = mroz)
firststage

Call:
lm(formula = educ ~ mothereduc + exper + I(exper~2), data = mroz)
Coefficients:
(Intercept) mothereduc exper I(exper~2)
9.775103 0.267691 0.048862 -0.001281

The second stage regression is:

Xhat = firststage$fitted.values
secondstage = 1lm(log(wage) ~ Xhat + exper + I(exper~2), data = mroz)
secondstage

Call:
Im(formula = log(wage) ~ Xhat + exper + I(exper”2), data = mroz)

Coefficients:
(Intercept) Xhat exper I(exper~2)
0.1981861 0.0492630 0.0448558 -0.0009221

Note that standard errors from these two separate steps should not be used. Instead, the
feols function gives you the correct standard errors by using the following notation:

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)

Endo. : educ

Instr. : mothereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.198186 0.489146 0.405167 0.6855588
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fit_educ 0.049263 0.038040 1.295045 0.1960095

exper 0.044856 0.015604 2.874667 0.0042481 *x*

I(exper~2) -0.000922 0.000432 -2.135025 0.0333316 *

Signif. codes: O 'x*x*' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

RMSE: 0.67642 Adj. R2: 0.116926

F-test (1st stage), educ: stat = 73.9 , P
Wu-Hausman: stat = 2.9683, p

A

2.2e-16 , on 1 and 424 DoF.
0.085642, on 1 and 423 DoF.

e The coefficient for educ drops from 0.107 to 0.059

¢ OLS overestimates the impact of education on wages

The t-statistic has a p-value of 0.19

e Using mothereduc as an instrument, educ is no longer significant

To improve the precision of the IV estimator, we can include further instruments like fathere-
duc

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 =*x
I(exper~2) -0.000899 0.000430 -2.090220 0.0371931 *
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551  Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , P < 2.2e-16 , on 2 and 423 DoF.
Wu-Hausman: stat 2.79259 , p 0.095441, on 1 and 423 DoF.
Sargan: stat 0.378071, p = 0.538637, on 1 DoF.

o Estimated return to education increases from 0.049 to 0.061

e The t-statistic has a p-value of 0.066

e Stronger instruments leads to more efficient IV estimation: educ is now significantly
different from zero at least at the 10% level.
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9.7 1V Diagnostics

The TSLS estimator relies on the exogeneity and relevance of the instruments. In empirical
applications, these assumptions should be critically assessed. This section introduces three
diagnostic tools used to evaluate different aspects of the IV strategy:

e The F-test for instrument relevance
e The Sargan test for instrument exogeneity
e The Wu-Hausman test for regressor endogeneity

F-test for instrument relevance
The first-stage F-test indicates whether the instruments Z, € R contain enough informa-
tion about the endogenous regressors X, € R¥, conditional on the exogenous controls W,.
Consider the one endogenous regressor k = 1 case with the first-stage regression,
Xi — Z,:ﬂ-l + W;ﬂ-z + 'Ui,
and test the joint null hypothesis
HO : 71’1 - 0.

To compute the F-statistic for this hypothesis, we follow the usual procedure and use a suit-
able robust covariance matrix (e.g., HC1 or cluster-robust), with an F-statistic whose null
distribution is asymptotically F},

If the statistic exceeds its critical value you reject H,, and conclude the instruments are rele-
vant.

Large-n 5% critical values for F are 3.84 for m = 1, 3.00 for m = 2, 2.60 for m = 3,

m,00

etc. (compute with qf (.95, m, Inf)).
Weak instruments

Relevance alone is not enough: the instruments may be weak if their correlation with X,
is small. Weakness matters because two-stage least squares (2SLS) can then suffer a large
finite-sample bias toward OLS. Define the relative bias

E [/B:TSLS] — 0 '
ElBors] — B

Staiger and Stock (1997) and Stock and Yogo (2005) derive critical values for the homoskedastic
first-stage statistic that control the null hypothesis “relative bias > 10% of the OLS bias” at

relBias =
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the 5% significance level. With one instrument the 5% cut-off is approximately 10. Hence,
the following rule of thumb is established in applied work:

First-stage F' > 10 = instruments strong
First-stage FF <10 = instruments weak

This is a quick approximation that relies on the homoskedasticity assumption and only works
well when m is small.

For heteroskedastic (or cluster-robust) settings, Montiel Olea and Pflueger (2013) replace the
standard rule of thumb: To reject the null hypothesis of a relative bias larger than 10% at the
5% level you need a robust F-statistic that exceeds its critical value, which varies between about
11 and 23.1 depending on m and the estimated error-covariance matrix (HC1, cluster-robust,
HAC, etc.). The conservative rule

First-stage robust F' > 23.1 = instruments strong
First-stage robust F' < 23.1 = instruments weak

is therefore sufficient (but not always necessary) for any number of instruments when k£ = 1.

If several regressors are endogenous (k > 2), each has its own first-stage equation, and the
scalar F' no longer summarizes the joint instrument strength. An alternative is the matrix-
based Kleibergen—Paap tests of Kleibergen and Paap (2006), which extend the Staiger-Stock-
Yogo logic to the multivariate case.

Anderson-Rubin Test

To conduct inference when the first-stage is weak, the usual TSLS ¢-, F- or Wald tests are
unreliable — they tend to over-reject and their confidence intervals undercover.

A simple, robust alternative is the Anderson—Rubin (AR) test. The logic is that, under
the structural model, the instruments Z; should contain no information about the structural
error

u =Y, — XiB— W,

Hence, if the null hypothesis H,: 8 = B, holds, the adjusted outcome Y; — X8, must be un-
correlated with the instruments conditional on the controls. In practice one runs the auxiliary
regression

Y= XiBy= Zim+ Wil +e,
and computes the heteroskedastic- or cluster-robust F-statistic, F,., for the joint null # = 0
(numerator d.f. = m). Reject H, when

Frob > Fm,oo;l—av

where m is the number of instruments. This decision rule delivers correct size regardless of
instrument strength, but it has lower power than the TSLS-based tests when instruments are
strong.
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Repeating the test over a grid of candidate B values and retaining those not rejected yields
a (1 —a) Anderson-Rubin confidence region that remains valid even when the first-stage F' is
very small.

Sargan Test for Instrument Exogeneity

When the set of instruments is overidentified (m > k), we can statistically assess whether all
instruments satisfy the exogeneity condition E[Z,u,] = 0.

The classical procedure is the Sargan test (also called the test of over-identifying restrictions
or the J-test).

Null and alternative hypotheses

o H, (all instruments are valid): every instrument is uncorrelated with the structural error
term wu,.
o H, (at least one instrument is invalid): some instrument is correlated with wu;.

Computation of the Sargan J-statistic

1. Estimate the structural equation by TSLS (using all m instruments) and obtain
the residuals ~
~TSLS __ / I~
;O =Y, = (XiBrgrs + Widpgrs)-

2. Regress ﬁ;rSLS on the full set of instruments and exogenous controls
WS =00+ 01 Zy + o+ 0 Zy, + Wil + e
3. Let F be the (homoskedastic-only) F-statistic for the joint null 6; = --- = 4,, = 0. The

Sargan statistic is
J=m-F.

Under H, and homoskedastic errors, J ~ x2 , in large samples .

If heteroskedasticity is suspected, the Hansen robust J-statistic should be used.
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Decision rule and interpretation

o Reject H, if J exceeds the critical value of the x? , distribution (or if the p-value is
below the chosen significance level). This implies that the data are inconsistent with the
joint exogeneity of the instruments; at least one instrument is likely invalid.

o Fail to reject H, when J is small. This provides no evidence against instrument validity,
but does not prove exogeneity.

Practical remarks

o The test cannot be performed when the model is exactly identified (m = k); then J =0
by construction and instrument validity must be argued on theoretical grounds.

e A significant J-statistic tells us that something is wrong with the instrument set, but not
which instrument(s) are problematic. Empirical judgment and auxiliary tests (e.g. re-
estimating with different subsets of instruments) are required.

9.7.1 Wu-Hausman Test for Endogeneity

The Wu-Hausman test evaluates whether the regressors X, are in fact endogenous. That

is, it tests the null hypothesis of exogeneity, i.e.: Hj : E[X,u;] =0.

Recall the first stage regressions

Xij:ZQﬂ'lj—i-W;ﬂ'gj—i-v j:L...,I{,

K
and let v, = (v;1,...,v;;)" be the stacked error terms of the first-stage regressions.

As discussed previously, Z;ﬂlj + W;7r2j represents the exogenous part of X;; and v;; the
endogenous part. Thus, v, is the endogenous part of the full vector of endogenous regressors
X,;. Therefore,

EX,u;]=0 < Ewu; =0.

Consider § = E[v,v;] ! E[v,u,;], which is the population regression coefficient of the auxiliary
regression

From the definition of § we see that
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Therefore, testing H,, : E[X,u;] =0 is equivalent to testing 6 = 0.

Note that Equation 9.6 is an infeasible regression because u,; and v; are unknown. While v,
can be estimated using the residuals v, from the first-stage regressions, there are no suitable
sample counterparts for u,; available under endogeneity.

We may insert Equation 9.6 into the structural equation given by Equation 9.1:
Y, =X+ Wiy+vd +¢,. (9.7)

Equation 9.7 is a well defined regression model with regressors X,, W,, v, and regression error
€;. 'To see this note that

(i) Elve;] =0 by Equation 9.6;
(ii) E[W ;] =0 because W, are exogenous;
Therefore, we may apply an F-test on the restriction § = 0 in Equation 9.7 when v, is replaced

by v,, which is known as the Wu-Hausman test.

Wu-Hausman Procedure:

1. Run the first-stage regression for each endogenous regressor X, ; and obtain residuals v,
j=1,..k.

2. Stack the residuals as v; = (V;1, ..., V;1)

3. Run the augmented regression:

Y, =X{B+Wiy+9,6+¢,
4. Test Hy : 0 =0 using an F-test or Wald test, which has k restrictions.

If the test does not reject H, then there is evidence for exogenous regressors with E[X,u;] =0,
and the conventional OLS without instruments should be used because it is more efficient than
TSLS.

9.8 Example: Return of Education Revisited

Recall the previous TSLS regression with instrument mothereduc

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc, data = mroz, vcov = "HC1")
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TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.198186 0.489146 0.405167 0.6855588
fit_educ 0.049263 0.038040 1.295045 0.1960095
exper 0.044856 0.015604 2.874667 0.0042481 *x*
I(exper~2) -0.000922 0.000432 -2.135025 0.0333316 *
Signif. codes: O '**xx' 0.001 '*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.67642 Adj. R2: 0.116926
F-test (1st stage), educ: stat = 73.9 , P
Wu-Hausman: stat = 2.9683, p

A

2.2e-16 , on 1 and 424 DoF.
0.085642, on 1 and 423 DoF.

The first stage F-statistic is 73.9 indicating that the instrument is strong. The Wu-Hausman
statistic has a p-value of 0.08, which indicates that educ is significantly endogenous at the
10% level. The Sargan test is not displayed because of exact identification.

We also discussed the T'SLS results with two instruments:

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 *x*
I(exper~2) -0.000899 0.000430 -2.090220 0.0371931 *
Signif. codes: O '*x*xx' 0.001 '«x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551  Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , P < 2.2e-16 , on 2 and 423 DoF.
Wu-Hausman: stat 2.792589 , p 0.095441, on 1 and 423 DoF.
Sargan: stat 0.378071, p = 0.538637, on 1 DoF.
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Similarly, the F-statistic of 55.4 indicates that the instruments are strong and the Wu-Hausman
test gives some statistical evidence of an endogeneity problem. The Sargan test does not reject,
which indicates no evidence against instrument validity (but does not prove exogeneity of the
instruments).

9.9 R-codes

metrics-sec09.R

References

Kleibergen, Frank, and Richard Paap. 2006. “Generalized Reduced Rank Tests Using the
Singular Value Decomposition.” Journal of Econometrics 133 (1): 97-126.

Montiel Olea, José Luis, and Carolin Pflueger. 2013. “A Robust Test for Weak Instruments.”
Journal of Business & Economic Statistics 31 (3): 358-69.

Staiger, Douglas, and James H Stock. 1997. “Instrumental Variables Regression with Weak
Instruments.” Econometrica 65 (3): 557-86.

Stock, James H., and Motohiro Yogo. 2005. “Testing for Weak Instruments in Linear IV
Regression.” In Identification and Inference for Econometric Models: Essays in Honor of
Thomas Rothenberg, edited by Donald W. K. Andrews and James H.Editors Stock, 80-108.
Cambridge University Press.

163


https://metrics.svenotto.com/metrics-sec09.R

Part V

Big Data Econometrics

164



10 Shrinkage Estimation

library(glmnet)

Shrinkage estimation is a highly valuable technique in the context of high-dimensional regres-
sion analysis. It allows for the estimation of regression models with more regressors than
observations.

10.1 Mean squared error

The key measure of estimation accuracy is the mean squared error (MSE). The MSE of
an estimator 6 for a parameter 6 is

MSE(6) = E[(6 — 6)2].
The MSE can be decomposed into the variance plus squared bias:

MSE(6) = E[(6 — E[0)*] + (E[§] — 6)?

=Var|[0) =Bias(6)2

Proof. Subtracting and adding E[f] gives
(0—0)

2=
= (@—Ef

E[6) + E[6] — 6)?

~ -~

24 2(6 — E[0))(E[A) — 6) + (E[6] — 6)2.

~— )y

6]

The middle term is zero after taking the expectation:

~

E[(0—0)%] = E[(6 — E[f))?] +2 E[0 — E[0]] Bias(0) + Bias(0)>.

:Va'r[é] =0

g O
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For instance, consider an i.i.d. sample Xi,..., X, with population mean E[X,] = p and
variance Var[X;] = 02. Let’s study the sample mean

I
N:ﬁ;Xi

as an estimator of u. You will find that

. . o?
Elp] = p, Varla] = —.

Proof. By the linearity of the expectation, we have

Bl = L3 B =

m

SRS

The independence of X, ..., X, implies

- 1 n 1 & o2
Var[u] = 7,L2VCLT|:ZX1':| =3 ZV@T[Xi] =
i=1 i=1

g O

The sample mean is unbiased for pu, i.e., Bias(fi) = E[i] — u = 0. The MSE equals its

variance: )

~ o

The sample mean is the best unbiased estimator for the population mean, but there exists
estimators with a lower MSE if we allow for a small bias.

10.2 A simple shrinkage estimator

Let us shrink our sample mean a bit towards 0 and define the alternative estimator
ﬁ:(l—IU)ﬂ, w6[071]

Setting the shrinkage weight to w = 0 gives i = /i (no shrinkage) and w =1 gives i = 0 (full
shrinkage). Our shrinkage estimator has the bias

Bias(ji) = E[(1 — w)fi] — jt = (1 — w) B[] —u = —uwp.
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The variance is

[\

Varli] = Var[(1 - w)ill = (1 — w)*Var[i] = (1 - w)*~,

and the MSE is

2
MSE(j1) = Var[fi] + Bias(fi)? = (1 — w)2% +w?pl.

The optimal weight in terms of the MSE is
B 1
1+ np?/o?
Proof. We take the derivative of mse(fi) across w to obtain the first order condition:
—2(1 —w)o?/n + 2wu? = 0.

Solving for w gives w(1 + nu?/0?) = 1. Then, w* is the global minimum because the second
derivative is 202 /n + 2u? > 0. O O

For instance, if =1, 02 = 1, and n = 99, we have w* = 0.01.

The shrunk sample mean

~ - nu?/o?
=== ey Z

has a lower MSE than the usual sample mean:

MSE(ii') = (1— w22 + (w')2? < = = mselj)

This is a remarkable result because it tells us that the sample mean is not the best we can do
in the MSE sense to estimate a population mean. The shrinked estimator is more efficient. It

is biased, but the bias vanishes asymptotically since lim,, ,., w* = 0.

The optimal shrinkage parameter w* is infeasible because 12 /o2 is unknown. While insightful
theoretically, this result is not directly applicable in empirical work, and taking sample means
is still recommended.

However, the shrinkage principle can be very useful in the context of high-dimensional regres-
sion.
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10.3 High-dimensional regression

Least squares regression works well when the number of regressors k is small relative to the
number of observations n. In a previous section on “too many regressors”, we discussed how
ordinary least squares (OLS) can overfit when k is too large compared to n. Specifically, if
k = n, the OLS regression line perfectly fits the data.

Many economic applications involve categorical variables that are transformed into a large
number of dummy variables. If we include pairwise interaction terms among J variables, we

get another Z;:ll i = J(J—1)/2 regressors (for example, 190 for J=20 and 4950 for J=100).

Accounting for further nonlinearities by adding squared and cubic terms or higher-order inter-
actions can result in thousands or even millions of regressors. Many of these regressors may
provide low informational value, but it is difficult to determine a priori which are relevant and
which are irrelevant.

If k > n, the OLS estimator is not uniquely defined because X’X does not have full rank. If
k =~ n the matrix X’X can be near singular, resulting in numerically unstable OLS coefficients
or high variance.

For the vector-valued (k-variate) estimator ﬁols the (conditional) MSE is

MSE(B,,|X) = E|(B,,, — B (B,,, — B)|X]

= Var[ 161X+ Bms( ols \X)(Bzas( ols \X))
where, under random sampling, OLS is unbiased:

Bias(B., |X) = E[B sl X] —B=0.

ols

Consequently, the MSE of OLS equals its variance:

MSE(B,|X) = Var[B,, |X] = (X'X) ' X'DX(X'X)"!

10.4 Ridge Regression

To avoid that (X’X)~! becomes very large or undefined for large k, we can introduce a shrink-
age parameter A and define the ridge regression estimator

Brigge = (X' X + M) X'Y. (10.1)

This estimator is well defined and does not suffer from multicollinearity problems, even if
k > n. The inverse (X’X + M)~ ! exists as long as A > 0. For A = 0, the ridge estimator
coincides with the OLS estimator.
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While the OLS estimator is motivated from the minimization problem

min(Y — XB)'(Y — XB).

the ridge estimator is the minimizer of

min(Y — XB) (Y — XB) + M3'8. (10.2)

The minimization problem introduces a penalty for large values of 8. The solution is then
shrunk towards zero by A > 0.

10.5 Standardization

It is common practice to standardize the regressors in ridge regression:
~ X, — X, — 1
Xij = = C X=X
1 n ¥ n 4
1 i (X — X)? =1

Without standardization, variables with larger scales (i.e., larger variances) will disproportion-

ately influence the penalty term through A\3'8 = A ijl ﬁ?. Variables with smaller variance
may be under-penalized, while those with larger variance may be over-penalized.

Standardization ensures that each variable contributes equally to the penalty term, making
the penalty independent of the scale of the variables.

Standardizing makes the coefficient estimates more interpretable, as they will all be on the
same scale, which helps in understanding the relative importance of each variable.

10.6 Ridge Properties

The bias of the ridge estimator is

Bias(B,., |X)=—-MNX'X+\,)"'8,

ridge

and the covariance matrix is

Var[,B”.dge|X] = (X'X+ M, 'X'DX(X'X + M) *.
In the homoskedastic linear regression model, we have
MSE(B,,,,.1X) < MSE(B,,,|X)

if 0 <\ <202/8'B.

Similarly to the sample mean case, the upper bound 202 /8’8 does not give practical guidance
for selecting A because 8 and o2 are unknown.
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10.7 Mean squared prediction error

The optimal value for A minimizes the MSE, but estimating the MSE of the ridge estimator
is not straightforward because it depends on the parameter 8 being estimated. Instead, it is
better to focus on the out-of-sample mean squared prediction error (MSPE).

Let (Y;,X,),...,(Y,,,X,,) be our data set (in-sample observations) with ridge estimator Equa-
tion 10.1, and let (Y°°%, X°°%) be another observation pair (out-of-sample observation) that is
independently drawn from the same population as (Y;,X,), ..., (Y,,X,).

The mean squared prediction error (MSPE) is

MSPE(ﬂridge> = E[(yoos - (Xoos)/ﬁridge)Q]'

Note that (Y°°%, X°°%) is independent of B because it has not been used for estimation.

?(Xoos) _ (Xoos)/ﬁ

ridge
-qoe 18 the predicted value of Yo%,
ridge

To estimate the MSPE, we can use a split sample.

1) We divide our observations randomly into a training sample (in-sample) of size n,,.,;,,
and a testing sample (out-of-sample) of size n,.,; With 7 = 1y, 5 + Myest:

(Ylins,Xilns)’ (Y’LTLS Xins )’ (Yloos’Xgos)’ (Yoos X oos )

Ntrain’ Nirain Ntest’ Niest
2) We estimate B using the training sample:
~ins Nirain ) ) -1 Nirain . )
ﬂ’r‘idge = ( Z X'ZLnS<X2nS>, + AIk) Z Xﬁnsi/izns‘
i=1 =1
3) We evaluate the empirical MSPE using the testing sample,
- Niest , ~ins 2
MSPEsplit = rost Z <}/7LOOS - (Xioos) ﬂridge) (103)
est =1

Steps 2 and 3 are repeated for different values for A. We select the value for A that gives the
smallest estimated MSPE.

170



10.8 Cross validation

A problem with the split sample estimator is that it highly depends on the choice of the two
subsamples. An alternative is to select m subsamples (folds) and evaluate the MSPE using
each fold separately:

m-fold cross validation

1) Divide the sample into j = 1, ..., m randomly chosen folds/subsamples of approximately
equal size:

v, xMy, L x)y
AR SRR A5 ¢'5)

(v, X, (v x

m

2) Select j € {1,...,m} as left-out test sample and use the other subsamples to compute

the ridge estimator , where the j-th fold is not used.

J
ridge
3) Compute Equation 10.3 using the j-th folds as a test sample, i.e.,

MSPE, = L3 (- 0 B)

7
;=

4) The m-fold cross validation estimator is the weighted average over the m subsample
estimates of the MSPE:

m
— n, —
MSPE,, 1o =Y #MSPEj,
j=1
where n = Z;n:l n; is the total number of observations.
5) Repeat these steps over a grid of tuning parameters for A, and select the value for A that

minimizes M/S’?Em fold-

Common values for m are m = 5 and m = 10. The larger m, the less biased the estimation of
the MSPE is, but also the more computationally expensive the cross validation becomes.

The largest possible value for m is m = n, where each observation represents a fold. This
is also known as leave-one-out cross validation (LOOCV). LOOCV might be useful for small
datasets but is often infeasible for large dataset because of the large computation time.
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10.9 L2 Regularization: Ridge

/

The ¢,-norm of a vector @ = (ay, ..., a;)" is defined as

k 1/p
lal, = (Z \ajlp) -

J=1

Important special cases are the ¢;-norm and ¢,-norm:

k k 1/2
fal =" lel ol = (Yoat) =V
=1

J=1

The ¢;-norm is the sum of absolute values, and the ¢y,-norm, also known as the Euclidean
norm, represents the length of the vector in the Euclidean space.

Ridge regression is also called L2 regularization because it penalizes the sum of squared
errors by the square of the £,-norm of the coefficient vector, ||B8]3 = 8’8. Ridge is the solution
to the minimization problem Equation 10.2, which can be written as

~

B, age = argming (Y — XB)'(Y — XB) + AlBI3.

10.10 L1 Regularization: Lasso

An alternative approach is L1 regularization, also known as lasso. The lasso estimator is
defined as

Brasso = argming (¥ — XB)' (Y — XB) + A|B| .
where 8], = 37, |;].

The elastic net estimator is a hybrid method. It combines L1 and L2 regularization using a
weight 0 < a < 1:

Bt o = argming(Y — XB)" (Y — XB) + (e Bl; + (1 — )] B]3)-
This includes ridge (o = 0) and lasso (a = 1) as special cases.

Ridge has a closed form solution given by Equation 10.1. Lasso and elastic net with a >
0 require numerical solutions by means of quadratic programming. The solution typically
involves some zero coefficients.
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10.11 Implementation in R

Let’s consider the mtcars dataset, which is available in base R. Have a look at ?mtcars to see
the data description.

We estimate a ridge regression model to predict the variable mpg (miles per gallon) using the
other variables. We consider the values A = 0.5 and A = 2.5.

Ridge, lasso, and elastic net are implemented in the glmnet package. The glmnet () function
requires matrix-valued data as input. The model.matrix() command is useful because it
produces the regressor matrix X and converts categorical variables into dummy variables.

Y = mtcars$mpg

X = model.matrix(mpg ~., data = mtcars)[,-1]

## Number of observations m and regressors k:

dim(X)

[1] 32 10

fit.ridgel = glmnet(x=X, y=Y, alpha=0, lambda = 0.5)
fit.ridge2 = glmnet(x=X, y=Y, alpha=0, lambda = 2.5)
fits = cbind(coef(fit.ridgel), coef(fit.ridge2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")

fits

11 x 2 sparse Matrix of class "dgCMatrix"

lambda=0.5 lambda=2.5
(Intercept) 19.420400249 21.179818696
cyl -0.250698757 -0.368541841
disp -0.001893223 -0.005184086
hp -0.013079878 -0.011710951
drat 0.978514241 1.052837310
wt -1.902328296 -1.264016952
gsec 0.316107066 0.164790158
Vs 0.472551434 0.755205256
am 2.113922488 1.655241565
gear 0.631836101 0.546732963
carb -0.661215998 -0.560023425

standardized. Therefore the coefficients represent the marginal
response variable for a one standard deviation change in the

By default the regressors are
effects as the change in the
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regressor. For instance, with A = 0.5, the coefficient of wt (weight) is -1.9, which means that
a one standard deviation increase in weight leads to a decrease of 1.9 miles per gallon.

When we exclude the intercept, the average coefficient size (with respect to the ¢, norm)
becomes small for larger values of A:

c(
sqrt (sum(coef (fit.ridgel) [-1]172)),
sqrt (sum(coef (fit.ridge2) [-1]172))
)

[1] 3.204323 2.606156

The lasso estimator (« = 1) sets many coefficients equal to zero:

fit.lassol = glmnet(x=X, y=Y, alpha=1, lambda = 0.5)
fit.lasso2 = glmnet(x=X, y=Y, alpha=1, lambda = 2.5)
fits = cbind(coef(fit.lassol), coef(fit.lasso2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")

fits

11 x 2 sparse Matrix of class "dgCMatrix"
lambda=0.5 lambda=2.5
(Intercept) 35.88689755 30.0625817

cyl -0.85565434 -0.7090799
disp .

hp -0.01411517

drat 0.07603453 .

wt -2.67338139 -1.7358069
gsec

Vs .

am 0.48651385

gear .

carb -0.10722338

The cv.glmnet() command estimates the optimal shrinkage parameter using 10-fold cross
validation:

set.seed(123) ## for reproducibility
cv.glmnet (x=X, y=Y, alpha = 0)$lambda.min
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[1] 2.746789

cv.glmnet (x=X, y=Y, alpha = 1)$lambda.min

[1] 0.8007036

We can use ridge and lasso to estimate linear models with more variables than observations.
The command ~2 includes all pairwise interaction terms, which produces 55 variables in total.
The dataset has n = 32 observations.

X.large = model.matrix(mpg ~. "2, data = mtcars)[,-1]
dim(X.large) # more regressors than observations

[1] 32 565

fit.ridgelarge = glmnet(x=X.large, y=Y, alpha=0, lambda = 0.5)
fit.lassolarge = glmnet(x=X.large, y=Y, alpha=1, lambda
fits = cbind(

coef(fit.ridgelarge), coef(fit.lassolarge)

]
o
(62}
~

)

colnames(fits) = c("ridge", "lasso")
fits

56 x 2 sparse Matrix of class "dgCMatrix"

ridge lasso
(Intercept) 1.315259e+01 23.655330629
cyl -4.061218e-02 -0.036308043
disp -8.137358e-04
hp -5.588290e-03
drat 4.386174e-01 .
wt -5.547986e-01 -1.301739306
gsec 2.308772e-01
Vs 6.705889e-01
am 4.379822e-01
gear 8.788479e-01
carb -1.537294e-01
cyl:disp 6.830897e-05
cyl:hp 1.351742e-04
cyl:drat 2.455464e-02
cyl:wt -2.621868e-03
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cyl:qgsec
cyl:vs
cyl:am
cyl:gear
cyl:carb
disp:hp
disp:drat
disp:wt
disp:qgsec
disp:vs
disp:am
disp:gear
disp:carb
hp:drat
hp:wt
hp:gsec
hp:vs
hp:am
hp:gear
hp:carb
drat:wt
drat:gsec
drat:vs
drat:am
drat:gear
drat:carb
wt:gsec
wt:vs
wt:am
wt:gear
wt:carb
gsec:vs
gsec:am
gsec:gear
gsec:carb
vs:am
Vs:gear
vs:carb
am:gear
am:carb
gear:carb

To get the fitted values you may use the predict () command:

.358094e-03
.591177e-01
.102385e-02
.481957e-02
.499023e-04
.592521e-06
.421536e-05
.191122e-04
.789464e-05
.280463e-03
.043597e-03
.601317e-04
.255358e-04
.086003e-03
.404097e-04 .
.347470e-04 -0.001328046
.858343e-02
.604620e-03
.464491e-04
.107116e-04
.766081e-01

3.828881e-02

[

.123963e-01

5.047132e-02

.294201e-02
.770358e-02
.289204e-02
.239643e-01
.197733e-01
.890703e-01
.497574e-02
.114409e-02
.199239e-02
.035311e-02
.859676e-02
.688134e-01
.311330e-01
.768199e-01
.462749e-01
.588431e-01

8.165764e-03

-0.337667877

0.073725291

0.041623415

2.429571498
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Yhatridge = predict(fit.ridgelarge, newx = X.large)
Yhatlasso = predict(fit.lassolarge, newx = X.large)
Yhats = cbind(Y, Yhatridge, Yhatlasso)
colnames(Yhats) = c("Y", "Yhat-ridge", "Yhat-lasso")
Yhats

Y Yhat-ridge Yhat-lasso

Mazda RX4 21. 20.94312  21.64528
Mazda RX4 Wag 21. 20.47797  21.14997
Datsun 710 22. 26.12112  25.98585
Hornet 4 Drive 21. 19.57785 19.91064
Hornet Sportabout 18. 17.25059  17.35026
Valiant 18. 19.256815  19.52858
Duster 360 14. 14.80168  15.42082
Merc 240D 24. 23.06386  22.50685
Merc 230 22. 23.69586  22.78181
Merc 280 19. 18.47341  19.75241
Merc 280C 17. 18.755621  19.92770
Merc 450SE 16. 15.39830  15.79922
Merc 450SL 17. 16.19856  16.61670
Merc 450SLC 15. 16.21931  16.54465

Cadillac Fleetwood 10.
Lincoln Continental 10.
Chrysler Imperial 14.

12.25717  12.57063
11.74625  11.88810
11.64161 11.58002

Fiat 128 32. 28.79845  27.43656
Honda Civic 30. 31.07410  29.68475
Toyota Corolla 33. 30.63399  28.72288
Toyota Corona 21. 22.35048  22.60097
Dodge Challenger 15. 17.17402  17.68091
AMC Javelin 15. 17.70056  17.97138
Camaro Z28 13. 14.14050 14.67766
Pontiac Firebird 19. 16.37763  16.39890
Fiat X1-9 27. 29.32240  27.93021
Porsche 914-2 26. 26.15812  24.43481
Lotus Europa 30. 28.93150 27.72235

Ford Pantera L 15.
Ferrari Dino 19.
Maserati Bora 15.
Volvo 142E 21.

16.69717 17.16642
20.27929  20.20595
14.07394  14.80373
23.30782  24.50302

B O NP O WNWNOO O PP NIPEEPRPNWPLEONOP WL, NP> OO O
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10.12 R-codes

metrics-secl10.R
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11 Principal Components

If two regressors are highly correlated, we can typically drop one of the regressors because it
mostly contains the same information.

The idea of principal component regression is to exploit the correlations among the regressors
to reduce their number while retaining as much of the original information as possible.

11.1 Principal Components

The principal components (PC) are linear combinations of the regressor variables that capture
as much of the variation in the original variables as possible.

Principal Components

Let X, be a k-variate vector of regressor variables.

The first principal component is P;; = w|X,, where w, satisfies
w, = argmax,,, , Var{w X,]

The second principal component is P, = w5, X, where w, satisfies

Wy = argmax ,q,,—1 Varfw' X,;]
w' w, =0
The [-th principal component is P;; = w;X;, where w, satisfies

1

w, = argmax ww—1 Varw' X,]
ww,=.=w'w, ;=0

A k-variate regressor vector X, has k principal components P;,, ..., P;. and k corresponding
weights or principal component loadings w,,w,, ... ,w,.

By definition, the principal components are descendingly ordered by their variance:
Var[P;;] > Var[P,] > ... > Var[P,,] > 0

The principal component weights are orthonormal:

, 1 ifi=jy,
ww; = e
/ 0 ifi#j.

179



Moreover, w;, w,, ... ,w; form an orthonormal basis for the k-dimensional vector space R¥. The
regressor vector admits the following decomposition into its principal components:

k
X; =Y Pyw, (11.1)
=

The decomposition of a dataset into its principal components is called principal component
analysis (PCA).

11.2 Analytical PCA Solution

In this subsection, we will use some matrix calculus and eigenvalue theory. To recap the
relevant matrix algebra, the following resources will be useful:

o Eigenvalues and Eigenvectors: https://matrix.svenotto.com/04_ furtherconcepts.html
o Derivative rules for vectors: https://matrix.svenotto.com/05_ calculus.html

The maximization problem for the first principal component is

max Var[w' X;] subject tow'w = 1. (11.2)

The variance of interest can be rewritten as
Varlw'X;] = E[(w'(X; — E[X;]))?]
= E[(w'(X; — E[X;])(X; — E[X;])'w)]
=w E[(X, — EX,))(X, — E[X,]) ]w

=w'Xw

where ¥ = Var[X,] is the population covariance matrix of X,. Thus, the constrained maxi-
mization problem Equation 11.2 has the Lagrangian

L(w,\) =w'Sw — A(ww—1),

where A is a Lagrange multiplier.

Recall the derivative rules for vectors: If A is a symmetric matrix, then the derivative of a’ Aa
with respect to a is 2Aa. Therefore, the first order condition with respect to w is

Yw = \w. (11.3)

The pair (A, w) must satisfy the eigenequation Equation 11.3, which is precisely the eigenequa-
tion which defines an eigenvalue-eigenvector pair. The Lagrange multiplier A must be an
eigenvalue of ¥ and the weight vector w must be a corresponding eigenvector.
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By the first order condition with respect to A,
ww =1,

the eigenvector is normalized to length 1.

Therefore, the variance of interest is
Varlw X;] = w'w = w' (Aw) = \. (11.4)

Consequently, Var[w’X,] must be an eigenvalue of ¥ and w is a corresponding normalized
eigenvector.

The expression Varfw'X,;] = A is maximized if we use the largest eigenvalue A = \;. Conse-
quently, the variance of the first principal component P;; is equal to the largest eigenvalue \;
of ¥, and the first principal component weight w, is a normalized eigenvector corresponding
to the eigenvalue \;.

Analogously, the second principal component weight w, must also be a normalized eigenvector
of ¥ with the additional restriction that it is orthogonal to w,;. Therefore, it cannot be an
eigenvector corresponding to the first eigenvalue, and we use the second largest eigenvalue
A = Ay to maximize Equation 11.4.

The variance of the second principal component P;, is equal to the second largest eigenvalue
Ay of X, and the second principal component weight w, is a corresponding normalized eigen-
vector.

To continue this pattern, the variance of the [-th principal component P;; is equal to the [-th
largest eigenvalue \; of X, and the [-th principal component weight w; is a corresponding
normalized eigenvector.

Principal Components Solution

Let ¥ be the covariance matrix of the k-variate vector of regressor variables X;, let A\; >
Ay > ... > A, > 0 be the eigenvalues ordered in descending order of ¥, and let v, ..., v, be
corresponding orthonormal eigenvectors.

o The principal component weights are w; =v; for [ =1, ...,k
o The principal components are P;; = v;X,, and they have the properties

Var[Pyl =, Cov(Py, Py,) =0, 1#m.

1

Principal components are uncorrelated because

Cov(P,

m?

Py) = Elw,,,(X; — EIX;])(X,; — E[X,])w)]

w, Yw, =\, w, w,,

/
m

where w),w; =1 if m =1 and w),w;, =0 if m # 1
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11.3 Sample principal components

The covariance matrix ¥ = Var[X,] is unknown in practice. Instead, we estimate it from the
sample X ,..., X

LS, - X)X, - X

=1

Y=

n—1
Let A, > Ay > ..., A, > 0 be the eigenvalues of ¥ and let V4, ..., be corresponding orthonor-
mal eigenvectors. Then,
e The [-th sample principal component for observation ¢ is
ﬁi = @;X i
e The I-th sample principal component weight vector is
w, =7,

—~

o The (adjusted) sample variance of the [-th sample principal components series ﬁl Loy P
is \;, and the sample covariances of different principal components series are zero.

11.4 PCAin R

Let’s compute the sample principal components of the mtcars dataset:

pca = prcomp(mtcars)

## the principal components are arranged by columns
## first few rows of principal components:

pca$x |> head()

PC1 PC2 PC3 pPC4 PC5
Mazda RX4 -79.596425 2.132241 -2.153336 -2.7073437 -0.7023522
Mazda RX4 Wag -79.598570 2.147487 -2.215124 -2.1782888 -0.8843859
Datsun 710 -133.894096 -5.057570 -2.137950 0.3460330 1.1061111
Hornet 4 Drive 8.516559 44.985630 1.233763 0.8273631 0.4240145
Hornet Sportabout 128.686342 30.817402 3.343421 -0.5211000 0.7365801
Valiant -23.220146 35.106518 -3.259562 1.4005360 0.8029768

pPCé PC7 PC8 PC9 PC10
Mazda RX4 -0.31486106 -0.098695018 0.07789812 -0.2000092 -0.29008191
Mazda RX4 Wag -0.45343873 -0.003554594 0.09566630 -0.3533243 -0.19283553
Datsun 710 1.17298584 0.005755581 -0.13624782 -0.1976423 0.07634353
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Hornet 4 Drive -0.05789705 -0.024307168 -0.22120800 0.3559844 -0.09057039

Hornet Sportabout -0.33290957 0.106304777 0.05301719 0.1532714 -0.18862217

Valiant -0.08837864 0.238946304 -0.42390551 0.1012944 -0.03769010
PC11

Mazda RX4 -0.1057706

Mazda RX4 Wag -0.1069047

Datsun 710 -0.2668713

Hornet 4 Drive -0.2088354

Hornet Sportabout 0.1092563

Valiant -0.2757693

## the principal components weights
pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5
mpg -0.038118199 0.009184847 0.98207085 .047634784 -0.08832843
cyl 0.012035150 -0.003372487 -0.06348394 -0.227991962 0.23872590
disp 0.899568146 0.435372320 0.03144266 -0.005086826 -0.01073597
hp 0.434784387 -0.899307303 0.02509305 .035715638 0.01655194
drat -0.002660077 -0.003900205 0.03972493 -0.057129357 -0.13332765
wt 0.006239405 0.004861023 -0.08491026 .127962867 -0.24354296
PC6 PC7 PC8 PC9 PC10
mpg -0.143790084 -0.039239174 -2.271040e-02 -0.002790139 0.030630361
cyl -0.793818050 0.425011021 1.890403e-01 0.042677206 0.131718534
disp 0.007424138 0.000582398 5.841464e-04 0.003532713 -0.005399132
hp 0.001653685 -0.002212538 -4.748087e-06 -0.003734085 0.001862554
drat 0.227229260 0.034847411 9.385817e-01 -0.014131110 0.184102094
wt  -0.127142296 -0.186558915 -1.561907e-01 -0.390600261 0.829886844
PC11
mpg 0.0158569365
cyl -0.1454453628
disp -0.0009420262
hp 0.0021526102
drat 0.0973818815
wt 0.0198581635
## the standard deviations of the principal components
## are the square roots of the sample eigenvalues
pca$sdev
[1] 136.5330479 38.1480776 3.0710166 1.3066508 0.9064862 0.6635411
[7] 0.3085791  0.2859604  0.2506973 0.2106519  0.1984238
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Principal components are sensitive to the scaling of the data. Consequently, it is recommended
to first scale each variable in the dataset to have mean zero and unit variance: scale(mtcars).
In this case, ¥ is the correlation matrix.

pca = mtcars

pca$x |> head()

Mazda RX4

Mazda RX4 Wag
Datsun 710

Hornet 4 Drive
Hornet Sportabout

Valiant

Mazda RX4

Mazda RX4 Wag
Datsun 710

Hornet 4 Drive
Hornet Sportabout

Valiant

Mazda RX4
Mazda RX4 Wag
Datsun 710
Hornet 4 Drive
Hornet Sportabout 0.14640690

Valiant

|> scale()

PC1
.64686274
.61948315

.055625342
PC6

.34876781
0.01929700
0.14919276
.24383585

PC11
0.17969357
0.08864426
.09463291
0.14761127

0.01954506

pca$rotation |> head()

mpg -O0.
cyl O.
disp O.
hp 0.
drat -0.
wt 0.
mpg O.
cyl O.

PC1

3625305 0.
3739160 O.
.04932413
3300569 O.
2941514 0.
.14303825

3681852

3461033
PC7

PC2
01612440
04374371

24878402
27469408

PC8
367723810 0.754091423
057277736 0.230824925

. 73562427 -0.
.30686063 -2.
1.94339268 -0.
-2.

.01698737 -0.
.24172464 -0.
-0.
-0.

-0.

.22574419
.17531118
.06148414
.14001476
.16118879
.34181851

|> prcomp()

PC2
1.7081142
1.52566219
1441501
3258038
7425211
7421229

PC7
42648652
41620046
60884146
04036075
0.38350816
29464160

PC3

PC9
-0.23570162
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PC3
.5917309
.3763013
.2374391
.1336213
.1165366
0.1612456

P
0.0096312
0.0845202

.58525657
0.0495830
0.1602977
.2566124

pPC4
.022540255
.002591838
.256607885
.067676157
.854828743
.245899314
PC

0.

0.
-0.
-0.

0.
-0.
C8
17
13
65
29
57
20

10

11370221
19912121 1.
24521545
50380035
07446196
97516743

.10284468
.056848381
.393995630
.54004744
.07732727
.07502912

PC4

PC9
.14642303
.07452829
0.13122859
.22021812
0.02117623
0.03222907

PC5

PC11

-0.13928524 -0.12489563
-0.05403527 0.84641949 -0.14069544

PC5

0.9455234
0166807
.3987623
.5492089
.2075157
.2116654

PC10
0.06670350
0.12692766
.04573787
0.06039981
0.05983003
0.20165466

PC6

.10879743
.16855369
.33616451
.07143563
. 24449705
-0.

46493964



disp 0.214303077 -0.001142134 -0.19842785 -0.04937979 0.66060648
hp -0.001495989 0.222358441 0.57583007 -0.24782351 -0.25649206
drat 0.021119857 -0.032193501 0.04690123 0.10149369 -0.03953025
wt  -0.020668302 0.008571929 -0.35949825 -0.09439426 -0.56744870

pca$sdev

[1] 2.5706809 1.6280258 0.7919579 0.5192277 0.4727061 0.4599958 0.3677798
[8] 0.3505730 0.2775728 0.2281128 0.1484736

11.5 Variance of principal components

Since the sample principal components are uncorrelated, the total variation in the data is

k k k
Var[ zzjlﬁm] = ;Var[ﬁim] = 23\1

The proportion of variance explained by the I-th principal component is

VGT[EZ] Al

k =y - k N
Var[zmzl le] Zmzl Am

A scree plot is useful to see how much each principal component contributes to the total
variation:

pcvar = pca$sdev™2
varexpl = pcvar/sum(pcvar)
varexpl

[1] 0.600763659 0.240951627 0.057017934 0.024508858 0.020313737 0.019236011
[7] 0.012296544 0.011172858 0.007004241 0.004730495 0.002004037

plot(varexpl)
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cumsum(varexpl)

[1] 0.6007637 0.8417153 0.8987332 0.9232421 0.9435558 0.9627918 0.9750884
[8] 0.9862612 0.9932655 0.9979960 1.0000000

The first principal component explains more than 60% of the variation, the first four explain
more than 90% of the variation, the first 6 more than 95%, and the first 9 principal components
more than 99% of the variation.

11.6 Linear regression with principal components

Principal components can be used to estimate the high-dimensional (large k) linear regression
model
Y,=XB+u;, i=1,..,n

While ridge and lasso shrink coefficients to prevent overfitting, PCA reduces dimensionality
by transforming variables into orthogonal components before estimation.

Since the principal component weights wy, ..., w, form a basis of R¥, the regressors have the
basis representation given by Equation 11.1. Similarly, we can represent the coefficient vector
in terms of the principal component basis:

k
B=Y 6w, 0,=uwp. (11.5)
=1
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Inserting in the regression function gives

——
Pil

k
XiB=> Xw0,
=1 _
and the regression equation becomes
k
Y, =Y Py +u, (11.6)
=1

This regression equation is convenient because the regressors P;, are uncorrelated, and OLS

estimates for 6, can be inserted back into Equation 11.5 to get an estimate for B.

When £ is large, this approach is still prone to overfitting. The k principal components of X,
explain 100% of its variance, but it may be reasonable to select a smaller number of principal
components p < k that explain 95% or 99% of the variance.

The remaining k — p principal components explain only 5% or 1% of the variance. The idea
is that we truncate the model by assuming that the remaining principal components contain
only noise that is uncorrelated with Y.

Assumption (PC): E[P,, Y, =0forallm=p+1,... k.
This assumption implies that the components with indices larger than p contribute no system-

atic predictive power for Y;, and hence only introduce noise.

Because the principal components are uncorrelated, we have 6, = E[Y;P;]/E[P3], and, there-
fore §,, = 0 for m =p+ 1, ..., k. Consequently,

P
8= o, (11.7)
=1
and Equation 11.6 becomes a factor model with p factors:

P
}/;Zzelpil+ui:P;0+uiv
=1

where P, = (P;,...,P;,)" and 8 = (0,,...,0,)". The least squares estimator of 8 using the

regressors P;, i = 1,...n can then be inserted to Equation 11.7 to obtain an estimate for f.

In practice, the principal components are unknown and must be replaced by the first p sample
principal components

—~ —~ —

P,=(P,,..,P,), P,=uX,

K2 K3 K3

The feasible least squares estimator for 6 is

n ’ -1 n -
é: (917 ...7ép)/ — (Zﬁlﬁl> PZKJ
=1 =1

=
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and the principal components estimator for 8 is
~ p ~
B pe Z 0w,
=1

11.7 Selecting the number of factors

To select the number of principal components, one practical approach is to choose those that
explain a pre-specified percentage (90-99%) of the total variance.

Y = mtcars$mpg

X = model.matrix(mpg ~., data = mtcars)[,-1] |> scale()
## principal component analysis

pca = prcomp(X)

P = pca$x #full matrix of all principal components

## variance explained

eigenval = pca$sdev”2

varexpl = eigenval/sum(eigenval)

cumsum(varexpl)

[1] 0.5760217 0.8409861 0.9007075 0.9276582 0.9498832 0.9708950 0.9841870
[8] 0.9922551 0.9976204 1.0000000

The first four principal components explain more than 92% of the variance, and the first seven
more than 98%.

Another method involves creating a scree plot to display the eigenvalues (variances) for each
principal component and identifying the point where the eigenvalues sharply drop (elbow
point).

plot(eigenval)

188



m_
T Y]
2w
D)
o o}
2 o
H_
o)
| | | | |
2 4 6 8 10
Index

We find an elbow at four principal components.

Selecting the number of principal components, similar to shrinkage estimation, involves bal-
ancing variance and bias. If the Assumption (PC) holds, the PC estimator is unbiased; if it
doesn’t, a small bias is introduced. Increasing the number of components p reduces bias but
increases variance, while decreasing p reduces variance but increases bias.

Similarly to the shrinkage parameter in ridge and lasso estimation, the number of factors p
can be treated as a tuning parameter. We can use m-fold cross validation to select p such that
the MSE is minimized.

The caret package in R provides a convenient way to perform cross-validation and select the
optimal number of principal components.

set.seed(111)
## PCR 10-fold cross-valtidation
library(caret)

Lade nétiges Paket: ggplot2

Lade nétiges Paket: lattice

myfunc.cvpca = function(p){
data_pca = data.frame(Y, P[,1:p])
cv = train(
Y ~ ., data = data_pca,
method = "1m",
"RMSE",
trControl = trainControl(method = "cv", number = 10)

metric
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)
return(cv$results$RMSE)
}
# Iterate function crossval over ncomp = 1, ..., maxcomp
maxcomp = 10 # select not more than number of variables (for data_small select <=4)
cv.pca = sapply(1l:maxcomp, myfunc.cvpca) # sapply is useful for iterating over function argu

# Find the number of components with the lowest RMSPE
which.min(cv.pca)

(1] 5

plot(cv.pca, type="1")
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The 10-fold cross validation method suggests to use 5 principal components.

11.8 R-codes

metrics-secl1.R

190


https://metrics.svenotto.com/metrics-sec11.R

	Organization of the Course
	Timetable

	Basic Principles
	Data
	Data Structures
	Univariate Datasets
	Multivariate Datasets
	Matrix Algebra

	R Programming
	Datasets in R
	CASchools Dataset
	Data Frames
	Subsetting and Manipulation
	Plotting

	Importing Data
	CPS Dataset

	Data Types
	Cross-Sectional Data
	Time Series
	Panel Data

	Statistical Framework
	Random Variables
	Probability Theory
	Random Sampling
	Clustered Sampling
	Panel Data Clustering
	Time Dependence

	R-codes

	Summary Statistics
	Sample moments
	Mean

	Central sample moments
	Variance
	Standard Deviation

	Adjustments
	Degrees of Freedom
	Adjusted Sample Variance

	Density estimation
	Histogram
	Kernel density estimator

	Higher Moments
	Skewness
	Kurtosis

	Logarithmic Transformations
	Bivariate Statistics
	Covariance and Correlation

	Moment Matrices
	Mean Vector
	Covariance Matrix
	Correlation Matrix

	R-codes


	Linear Regression
	Least Squares
	Regression Fundamentals
	Regression Problem
	Linear Regression

	Ordinary least squares (OLS)
	Regression Plots
	Line Fitting
	Multidimensional Visualizations

	Matrix notation
	OLS Formula
	Residuals

	Goodness of Fit
	Analysis of Variance
	R-squared
	Adjusted R-squared

	Regression Table
	When OLS Fails
	Too many regressors
	Perfect multicollinearity
	Dummy variable trap

	R-codes

	Linear Model
	Conditional Expectation
	Examples
	The CEF as a Random Variable

	CEF Properties
	Law of Iterated Expectations (LIE)
	Conditioning Theorem (CT)
	Best Predictor Property
	Independence Implications

	Linear Model Specification
	Prediction Error
	Linear Regression Model
	Exogeneity
	Model Misspecification

	Population Regression Coefficient
	Moment Condition
	OLS Estimation

	Marginal Effects
	Interpretation of Coefficients
	Correlation vs. Causation
	Omitted Variable Bias
	Control Variables
	Good vs. Bad Controls
	Confounders
	Mediators and Colliders

	Application: Class Size Effect
	Control Strategy
	Interpretation of Marginal Effects
	Identifying Good and Bad Controls

	Nonlinear Modeling
	Polynomials
	Interactions
	Logarithms

	R-codes

	Regression Inference
	Strict Exogeneity
	Unbiasedness
	Sampling Variance of OLS
	Homoskedasticity
	Heteroskedasticity
	Clustered Sampling
	Time Series Data

	Gaussian Regression
	Classical Standard Errors
	Confidence Intervals
	Limitations of the Gaussian Approach

	Heteroskedastic Linear Model
	Heteroskedasticity-Robust Standard Errors
	HC1 Correction
	Robust Confidence Intervals

	R-codes

	Robust Testing
	t-Test
	p-Value
	Significance Stars
	Regression Tables

	Testing for Heteroskedasticity: Breusch-Pagan Test
	Testing for Normality: Jarque–Bera Test
	Joint Hypothesis Testing
	Wald Test
	F-test
	F-tests in R

	Jackknife Methods
	Projection Matrix
	Leverage Values
	Standardized Residuals
	Residuals vs. Leverage Plot
	Jackknife Standard Errors

	Cluster-robust Inference
	Cluster-robust Standard Errors
	Finite Sample Correction
	When to Cluster
	Implementation in R
	Challenges with Cluster-robust Inference

	R-codes


	Panel Data Methods
	Fixed Effects
	Panel Data
	Pooled Regression
	Model Setup
	Pooled OLS
	Cluster-Robust Inference

	Time-invariant Regressors
	The Fixed Effects Model
	Identification Assumptions
	First-Differencing Estimator
	Within Estimator
	Fixed Effects Regression Assumptions
	Dummy Variable Approach

	Time Fixed Effects
	Two-way Fixed Effects
	Comparison of Panel Models
	Panel R-squared
	Within R-squared
	Overall R-squared
	Fitted Values

	Application: Traffic Fatalities
	Cross-sectional Analysis
	Fixed Effects Approach

	R-codes


	Causal Inference
	Endogeneity
	The Linear Model and Exogeneity
	Conditional vs Causal Effects: Price Elasticities
	Measurement Error
	Endogeneity as a Violation of (A1)
	Sources of Endogeneity

	Instrumental Variables
	Endogenous Regressors Model
	Instrumental Variables Model
	Two Stage Least Squares
	TSLS Assumptions
	Large-Sample Properties of TSLS
	Example: Return of Education
	IV Diagnostics
	F-test for instrument relevance
	Sargan Test for Instrument Exogeneity
	Wu-Hausman Test for Endogeneity

	Example: Return of Education Revisited
	R-codes
	References



	Big Data Econometrics
	Shrinkage Estimation
	Mean squared error
	A simple shrinkage estimator
	High-dimensional regression
	Ridge Regression
	Standardization
	Ridge Properties
	Mean squared prediction error
	Cross validation
	L2 Regularization: Ridge
	L1 Regularization: Lasso
	Implementation in R
	R-codes

	Principal Components
	Principal Components
	Analytical PCA Solution
	Sample principal components
	PCA in R
	Variance of principal components
	Linear regression with principal components
	Selecting the number of factors
	R-codes



