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Organization of the Course

Advanced Econometrics II – Nonlinear Methods and Applications is a graduate-level course
in regression analysis focusing on specialized econometric tools. We cover topics such as
linear regression, panel data methods, causal inference, high-dimensional regression, and time
series methods. Emphasis is on both theoretical understanding of the methods and practical
applications using the R programming language.

Timetable

See KLIPS Lecture and KLIPS Exercises for a detailed schedule.

Note: On Wednesday, April 16, we will have a lecture instead of exercises.

Please bring your own laptop to the Wednesday exercise sessions. If you do not have a laptop
available, please let me know by email.

Lecture Material

• This online script and its pdf version

• eWhiteboard

• Rscripts and additional files: sciebo folder

• More info on exam: ILIAS course

Day Time Lecture Hall Session Type
Monday 14:00 - 15:30 H80 (Philosophikum) Lecture
Wednesday 17:45 - 19:15 S82 (Philosophikum) Exercises

8

https://klips2.uni-koeln.de/co/wbTermin_list.wbLehrveranstaltung?pStpSpNr=492647
https://klips2.uni-koeln.de/co/wbTermin_list.wbLehrveranstaltung?pStpSpNr=494062
https://metrics.svenotto.com
https://metrics.svenotto.com/Advanced-Econometrics-II.pdf
https://uni-koeln.sciebo.de/s/Mn3wGWcp8x39Etm
https://uni-koeln.sciebo.de/s/a04v6D2kGcq3Oyx
https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_6203188.html


Literature

The script is self-contained. To prepare well for the exam, it’s a good idea to read this script.

The course is based on James H. Stock and Mark W. Watson’s Introduction to Economet-
rics (Fourth Edition). The Stock and Watson textbook is available for download: PDF by
chapter (Uni Köln VPN connection required).

Further recommended textbooks are:

• Econometric Theory and Methods, by Russell Davidson and James G. MacKinnon. PDF.
• Econometric Analysis of Cross Section and Panel Data, by Jeffrey M. Wooldridge. PDF

by chapter.
• An Introduction to Statistical Learning with Applications to R (Second Edition), by

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. PDF.
• Causal Inference: The Mixtape, by Scott Cunningham. Online version.
• Mostly Harmelss Econometrics, by J. Angrist and J. Pischke PDF by chapter.

Printed versions of the books are available from the university library.

Assessment

The course will be graded by a 90-minute exam. For detailed information please visit the
ILIAS course.

Communication

Feel free to use the ILIAS Metrics Forum to discuss lecture topics and ask questions. Please
let me know if you find any typos in the lecture material. Of course, you can reach me via
e-mail: sven.otto@uni-koeln.de

Important Dates

Registration deadline exam 1 July 28, 2025
Exam 1 August 04, 2025
Registration deadline exam 2 September 12, 2025
Exam 2 (alternate date) September 19, 2025

Please register for the exam on time. If you miss the registration deadline, you will not be
able to take the exam (the Examinations Office is very strict about this). You only need to
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take one of the two exams to complete the course. The second exam will serve as a make-up
exam for those who fail the first exam or do not take the first exam.

R-Packages

To run the R code of the lecture script, you will need to install some additional packages. Here
are the most important ones for this lecture:

install.packages(
c("fixest", "AER", "moments", "glmnet", "urca", "caret", "neuralnet",

"dplyr", "knitr", "tinytex", "stargazer", "scatterplot3d", "readxl", "modelsummary")
)

Some further datasets are contained in my package TeachData, which is available in a GitHub
repository. It can be installed using the following command:

install.packages("remotes")
remotes::install_github("ottosven/TeachData")
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Part I

Basic Principles
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1 Data

1.1 Data Structures

Univariate Datasets

A univariate dataset consists of a sequence of observations:

𝑌1, … , 𝑌𝑛.

These 𝑛 observations form a data vector:

𝑌𝑌𝑌 = (𝑌1, … , 𝑌𝑛)′.

Example: Survey of six individuals on their hourly earnings. Data vector:

𝑌𝑌𝑌 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

10.40
18.68
12.44
54.73
24.27
24.41

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Multivariate Datasets

Typically, we have data on more than one variable, such as years of education and gender.
Categorical variables are often encoded as dummy variables, which are binary variables.
The female dummy variable is defined as:

𝐷𝑖 = {1 if person 𝑖 is female,
0 otherwise.

person wage education female
1 10.40 12 0
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person wage education female
2 18.68 16 0
3 12.44 14 1
4 54.73 18 0
5 24.27 14 0
6 24.41 12 1

A 𝑘-variate dataset (or multivariate dataset) is a collection of 𝑛 observations on 𝑘 variables:

𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛.

The 𝑖-th vector contains the data on all 𝑘 variables for individual 𝑖:

𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′.

Thus, 𝑋𝑖𝑗 represents the value for the 𝑗-th variable of individual 𝑖. The full 𝑘-variate dataset
is structured in the 𝑛 × 𝑘 data matrix 𝑋𝑋𝑋:

𝑋𝑋𝑋 = ⎛⎜
⎝

𝑋𝑋𝑋′
1

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟
⎠

= ⎛⎜
⎝

𝑋11 … 𝑋1𝑘
⋮ ⋱ ⋮

𝑋𝑛1 … 𝑋𝑛𝑘

⎞⎟
⎠

The 𝑖-th row in 𝑋𝑋𝑋 corresponds to the values from 𝑋𝑋𝑋𝑖. Since 𝑋𝑋𝑋𝑖 is a column vector, we use the
transpose notation 𝑋𝑋𝑋′

𝑖, which is a row vector.

The data matrix for our example is:

𝑋𝑋𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

10.40 12 0
18.68 16 0
12.44 14 1
54.73 18 0
24.27 14 0
24.41 12 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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with data vectors:

𝑋𝑋𝑋1 = ⎛⎜
⎝

10.40
12
0

⎞⎟
⎠

𝑋𝑋𝑋2 = ⎛⎜
⎝

18.68
16
0

⎞⎟
⎠

𝑋𝑋𝑋3 = ⎛⎜
⎝

12.44
14
1

⎞⎟
⎠

⋮

Matrix Algebra

Vector and matrix algebra provide a compact mathematical representation of multivariate data
and an efficient framework for analyzing and implementing statistical methods. We will use
matrix algebra frequently throughout this course.

To refresh or enhance your knowledge of matrix algebra, consult the following resources:

Crash Course on Matrix Algebra:

matrix.svenotto.com (in particular Sections 1-3)
Section 19.1 of the Stock and Watson textbook also provides a brief overview of matrix
algebra concepts.

1.2 R Programming

The best way to learn statistical methods is to program and apply them yourself. We will use
the R programming language for implementing econometric methods and analyzing datasets.
If you are just starting with R, it is crucial to familiarize yourself with its basics. Here’s an
introductory tutorial, which contains a lot of valuable resources:

Getting Started with R:

rintro.svenotto.com

The interactive R package SWIRL offers an excellent way to learn directly within the R environ-
ment. A highly recommended online book to learn R programming is Hands-On Programming
with R.
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One of R’s greatest strengths is its vast package ecosystem developed by the statistical commu-
nity. The AER package (“Applied Econometrics with R”) provides a comprehensive collection
of tools for applied econometrics.

You can install the package with the command install.packages("AER") and you can load
it with:

library(AER)

at the beginning of your code.

1.3 Datasets in R

CASchools Dataset

Let’s load the CASchools dataset from the AER package:

data(CASchools, package = "AER")

The dataset is used throughout Sections 4-8 of Stock and Watson’s textbook Introduction to
Econometrics. It was collected in 1998 and captures California school characteristics including
test scores, teacher salaries, student demographics, and district-level metrics.

Variable Description Variable Description
district District identifier lunch % receiving free meals
school School name computer Number of computers
county County name expenditure Spending per student ($)
grades Through 6th or 8th income District avg income ($000s)
students Total enrollment english Non-native English (%)
teachers Teaching staff read Average reading score
calworks % CalWorks aid math Average math score

The Environment pane in RStudio’s top-right corner displays all objects currently in your
workspace, including the CASchools dataset. You can click on CASchools to open a table
viewer and explore its contents. To get a description of the dataset, use the ?CASchools
command.
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Data Frames

The CASchools dataset is stored as a data.frame, R’s most common data storage class for
tabular data as in the data matrix 𝑋𝑋𝑋. It organizes data in the form of a table, with variables
as columns and observations as rows.

class(CASchools)

[1] "data.frame"

To inspect the structure of your dataset, you can use str():

str(CASchools)

'data.frame': 420 obs. of 14 variables:
$ district : chr "75119" "61499" "61549" "61457" ...
$ school : chr "Sunol Glen Unified" "Manzanita Elementary" "Thermalito Union Elementary" "Golden Feather Union Elementary" ...
$ county : Factor w/ 45 levels "Alameda","Butte",..: 1 2 2 2 2 6 29 11 6 25 ...
$ grades : Factor w/ 2 levels "KK-06","KK-08": 2 2 2 2 2 2 2 2 2 1 ...
$ students : num 195 240 1550 243 1335 ...
$ teachers : num 10.9 11.1 82.9 14 71.5 ...
$ calworks : num 0.51 15.42 55.03 36.48 33.11 ...
$ lunch : num 2.04 47.92 76.32 77.05 78.43 ...
$ computer : num 67 101 169 85 171 25 28 66 35 0 ...
$ expenditure: num 6385 5099 5502 7102 5236 ...
$ income : num 22.69 9.82 8.98 8.98 9.08 ...
$ english : num 0 4.58 30 0 13.86 ...
$ read : num 692 660 636 652 642 ...
$ math : num 690 662 651 644 640 ...

The dataset contains variables of different types: chr for character/text data, Factor for
categorical data, and num for numeric data.

The variable students contains the total number of students enrolled in a school. It
is the fifth variable in the dataset. To access the variable as a vector, you can type
CASchools[,5] (the fifth column in your data matrix), CASchools[,"students"], or simply
CASchools$students.
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Subsetting and Manipulation

If you want to select the variables students and teachers, you can type CASchools[,c("students",
"teachers")]. We can define our own dataframe mydata that contains a selection of vari-
ables:

mydata = CASchools[,c("students", "teachers", "english", "income", "math", "read")]
head(mydata)

students teachers english income math read
1 195 10.90 0.000000 22.690001 690.0 691.6
2 240 11.15 4.583333 9.824000 661.9 660.5
3 1550 82.90 30.000002 8.978000 650.9 636.3
4 243 14.00 0.000000 8.978000 643.5 651.9
5 1335 71.50 13.857677 9.080333 639.9 641.8
6 137 6.40 12.408759 10.415000 605.4 605.7

The head() function displays the first few rows of a dataset, giving you a quick preview of its
content.

The pipe operator |> efficiently chains commands. It passes the output of one function as the
input to another. For example, mydata |> head() gives the same output as head(mydata).

A convenient alternative to select a subset of variables of your dataframe is the select()
function from the dplyr package. Let’s chain the select() and head() functions:

library(dplyr)
CASchools |> select(students, teachers, english, income, math, read) |> head()

students teachers english income math read
1 195 10.90 0.000000 22.690001 690.0 691.6
2 240 11.15 4.583333 9.824000 661.9 660.5
3 1550 82.90 30.000002 8.978000 650.9 636.3
4 243 14.00 0.000000 8.978000 643.5 651.9
5 1335 71.50 13.857677 9.080333 639.9 641.8
6 137 6.40 12.408759 10.415000 605.4 605.7

Piping in R makes code more readable by allowing you to read operations from left to right
in a natural order, rather than nesting functions inside each other from the inside out.

We can easily add new variables to our dataframe, for instance, the student-teacher ratio (the
total number of students per teacher) and the average test score (average of the math and
reading scores):
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# compute student-teacher ratio and append it to mydata
mydata$STR = mydata$students/mydata$teachers
# compute test score and append it to mydata
mydata$score = (mydata$read + mydata$math)/2

The variable english indicates the proportion of students whose first language is not English
and who may need additional support. We might be interested in the dummy variable HiEL,
which indicates whether the proportion of English learners is above 10 percent or not:

# append HiEL to mydata
mydata$HiEL = (mydata$english >= 10) |> as.numeric()

Note that mydata$english >= 10 is a logical expression with either TRUE or FALSE values.
The command as.numeric() creates a dummy variable by translating TRUE to 1 and FALSE
to 0.

Plotting

Scatterplots provide further insights:

plot(score ~ STR, data = mydata)
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# Set up a plotting area with two plots side by side
par(mfrow = c(1,2))
# Scatterplots of score vs. income and score vs. english
plot(score ~ income, data = mydata)
plot(score ~ english, data = mydata)

10 30 50

62
0

66
0

70
0

income

sc
or

e

0 20 40 60 80

62
0

66
0

70
0

english

sc
or

e

The option par(mfrow = c(1,2)) allows us to display multiple plots side by side. Try what
happens if you replace c(1,2) with c(2,1).

1.4 Importing Data

The internet serves as a vast repository for data in various formats, with csv (comma-separated
values), xlsx (Microsoft Excel spreadsheets), and txt (text files) being the most commonly
used.

R supports various functions for different data formats:

• read.csv() for reading comma-separated values
• read.csv2() for semicolon-separated values (adopting the German data convention of

using the comma as the decimal mark)
• read.table() for whitespace-separated files
• read_excel() for Microsoft Excel files (requires the readxl package)
• read_stata() for STATA files (requires the haven package)
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CPS Dataset

Let’s import the CPS dataset from Bruce Hansen’s textbook Econometrics.

The Current Population Survey (CPS) is a monthly survey conducted by the U.S. Census
Bureau for the Bureau of Labor Statistics, primarily used to measure the labor force status of
the U.S. population.

• Dataset: cps09mar.txt
• Description: cps09mar_description.pdf

url = "https://users.ssc.wisc.edu/~bhansen/econometrics/cps09mar.txt"
varnames = c("age", "female", "hisp", "education", "earnings", "hours",

"week", "union", "uncov", "region", "race", "marital")
cps = read.table(url, col.names = varnames)

Let’s create additional variables:

# wage per hour
cps$wage = cps$earnings/(cps$week * cps$hours)
# years since graduation
cps$experience = (cps$age - cps$education - 6)
# married dummy
cps$married = cps$marital %in% c(1, 2) |> as.numeric()
# Black dummy
cps$Black = (cps$race %in% c(2, 6, 10, 11, 12, 15, 16, 19)) |> as.numeric()
# Asian dummy
cps$Asian = (cps$race %in% c(4, 8, 11, 13, 14, 16, 17, 18, 19)) |> as.numeric()

We will need the CPS dataset later, so it is a good idea to save the dataset to your computer:

write.csv(cps, "cps.csv", row.names = FALSE)

This command saves the dataset to a file named cps.csv in your current working directory
(you can check yours by running getwd()). It’s best practice to use an R Project for your
course work so that all files (data, scripts, outputs) are stored in a consistent and organized
folder structure.

To read the data back into R later, just type cps = read.csv("cps.csv").
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1.5 Data Types

The most common types of economic data are:

• Cross-sectional data: Data collected on many entities at a single point in time without
regard to temporal changes.

• Time series data: Data on a single entity collected over multiple time periods.

• Panel data: Data collected on multiple entities over multiple time points, combining
features of both cross-sectional and time series data.

Cross-Sectional Data

The cps dataset is an example of a cross-sectional dataset, as it contains observations from
various individuals at a single point in time.

str(cps)

'data.frame': 50742 obs. of 20 variables:
$ age : int 52 38 38 41 42 66 51 49 33 52 ...
$ female : int 0 0 0 1 0 1 0 1 0 1 ...
$ hisp : int 0 0 0 0 0 0 0 0 0 0 ...
$ education : int 12 18 14 13 13 13 16 16 16 14 ...
$ earnings : int 146000 50000 32000 47000 161525 33000 37000 37000 80000 32000 ...
$ hours : int 45 45 40 40 50 40 44 44 40 40 ...
$ week : int 52 52 51 52 52 52 52 52 52 52 ...
$ union : int 0 0 0 0 1 0 0 0 0 0 ...
$ uncov : int 0 0 0 0 0 0 0 0 0 0 ...
$ region : int 1 1 1 1 1 1 1 1 1 1 ...
$ race : int 1 1 1 1 1 1 1 1 1 1 ...
$ marital : int 1 1 1 1 1 5 1 1 1 1 ...
$ experience: num 34 14 18 22 23 47 29 27 11 32 ...
$ wage : num 62.4 21.4 15.7 22.6 62.1 ...
$ married : num 1 1 1 1 1 0 1 1 1 1 ...
$ college : int 0 1 1 0 0 0 1 1 1 1 ...
$ black : int 0 0 0 0 0 0 0 0 0 0 ...
$ asian : int 0 0 0 0 0 0 0 0 0 0 ...
$ Black : num 0 0 0 0 0 0 0 0 0 0 ...
$ Asian : num 0 0 0 0 0 0 0 0 0 0 ...
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Time Series

My repository TeachData contains several recent time series datasets. For instance, we can
examine the annual growth rate of nominal quarterly GDP of Germany:

data("gdpgr", package="TeachData")
plot(gdpgr)
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Panel Data

The dataset Fatalities is an example of a panel dataset. It contains variables related to
traffic fatalities across different states (cross-sectional dimension) and years (time dimension)
in the United States:

data(Fatalities, package = "AER")
str(Fatalities)

'data.frame': 336 obs. of 34 variables:
$ state : Factor w/ 48 levels "al","az","ar",..: 1 1 1 1 1 1 1 2 2 2 ...
$ year : Factor w/ 7 levels "1982","1983",..: 1 2 3 4 5 6 7 1 2 3 ...
$ spirits : num 1.37 1.36 1.32 1.28 1.23 ...
$ unemp : num 14.4 13.7 11.1 8.9 9.8 ...
$ income : num 10544 10733 11109 11333 11662 ...
$ emppop : num 50.7 52.1 54.2 55.3 56.5 ...
$ beertax : num 1.54 1.79 1.71 1.65 1.61 ...
$ baptist : num 30.4 30.3 30.3 30.3 30.3 ...
$ mormon : num 0.328 0.343 0.359 0.376 0.393 ...
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$ drinkage : num 19 19 19 19.7 21 ...
$ dry : num 25 23 24 23.6 23.5 ...
$ youngdrivers: num 0.212 0.211 0.211 0.211 0.213 ...
$ miles : num 7234 7836 8263 8727 8953 ...
$ breath : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
$ jail : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ service : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ fatal : int 839 930 932 882 1081 1110 1023 724 675 869 ...
$ nfatal : int 146 154 165 146 172 181 139 131 112 149 ...
$ sfatal : int 99 98 94 98 119 114 89 76 60 81 ...
$ fatal1517 : int 53 71 49 66 82 94 66 40 40 51 ...
$ nfatal1517 : int 9 8 7 9 10 11 8 7 7 8 ...
$ fatal1820 : int 99 108 103 100 120 127 105 81 83 118 ...
$ nfatal1820 : int 34 26 25 23 23 31 24 16 19 34 ...
$ fatal2124 : int 120 124 118 114 119 138 123 96 80 123 ...
$ nfatal2124 : int 32 35 34 45 29 30 25 36 17 33 ...
$ afatal : num 309 342 305 277 361 ...
$ pop : num 3942002 3960008 3988992 4021008 4049994 ...
$ pop1517 : num 209000 202000 197000 195000 204000 ...
$ pop1820 : num 221553 219125 216724 214349 212000 ...
$ pop2124 : num 290000 290000 288000 284000 263000 ...
$ milestot : num 28516 31032 32961 35091 36259 ...
$ unempus : num 9.7 9.6 7.5 7.2 7 ...
$ emppopus : num 57.8 57.9 59.5 60.1 60.7 ...
$ gsp : num -0.0221 0.0466 0.0628 0.0275 0.0321 ...

1.6 Statistical Framework

Data is usually the result of a random experiment. The gender of the next person you meet, the
daily fluctuation of a stock price, the monthly music streams of your favorite artist, the annual
number of pizzas consumed - all of this information involves a certain amount of randomness.

Random Variables

In statistical sciences, we interpret a univariate dataset 𝑌1, … , 𝑌𝑛 as a sequence of random
variables. Similarly, a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is viewed as a sequence of random
vectors.

Cross-sectional data is typically characterized by an identical distribution across its indi-
vidual observations, meaning each element in the sequence 𝑌1, … , 𝑌𝑛 or 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 has the
same distribution function.
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For example, if 𝑌1, … , 𝑌𝑛 represent the wage levels of different individuals in Germany, each
𝑌𝑖 is drawn from the same distribution 𝐹 , which in this context is the wage distribution across
the country.

Similarly, if 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 are bivariate random variables containing wages and years of education
for individuals, each𝑋𝑋𝑋𝑖 follows the same bivariate distribution 𝐺, which is the joint distribution
of wages and education levels.

Probability Theory

A primary goal of econometric methods and statistical inference is to gain insights about
features of these true but unknown population distributions 𝐹 or 𝐺 using the available data.

Thus, a solid knowledge of probability theory is essential for econometric modeling. For a com-
prehensive recap on probability theory for econometricians, consider the following refresher:

Probability Theory for Econometricians:

probability.svenotto.com/
Section 2 of the Stock and Watson book also provides a review of the most important
concepts.

Random Sampling

Econometric methods require specific assumptions about sampling processes. The ideal ap-
proach is simple random sampling, where each individual has an equal chance of being selected
independently. This produces observations that are both identically distributed and indepen-
dently drawn - what we call independent and identically distributed (i.i.d.) random
variables or simply a random sample.

i.i.d. Sample

An independently and identically distributed (i.i.d.) sample, or random sample, consists of a
sequence of 𝑘-variate random vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 that:

1. Have the same probability distribution 𝐹 (identically distributed), where 𝐹(𝑎𝑎𝑎) = 𝑃(𝑋𝑋𝑋𝑖 ≤
𝑎𝑎𝑎) for any 𝑖 and 𝑎𝑎𝑎 ∈ ℝ𝑘

2. Are mutually independent, meaning their joint cumulative distribution function
𝐹𝑋𝑋𝑋1,…,𝑋𝑋𝑋𝑛

(𝑎𝑎𝑎1, … ,𝑎𝑎𝑎𝑛) = 𝑃(𝑋𝑋𝑋1 ≤ 𝑎𝑎𝑎1, … ,𝑋𝑋𝑋𝑛 ≤ 𝑎𝑎𝑎𝑛) factorizes completely:

𝐹𝑋𝑋𝑋1,…,𝑋𝑋𝑋𝑛
(𝑎𝑎𝑎1, … ,𝑎𝑎𝑎𝑛) = 𝐹(𝑎𝑎𝑎1) ⋅ 𝐹 (𝑎𝑎𝑎2) ⋅ … ⋅ 𝐹(𝑎𝑎𝑎𝑛)

for all 𝑎𝑎𝑎1, … ,𝑎𝑎𝑎𝑛 ∈ ℝ𝑘.
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𝐹 is called the population distribution or data-generating process (DGP).

An equivalent representation of the i.i.d. property can be obtained using the conditional
distribution function 𝐹𝑋𝑋𝑋𝑖|𝑋𝑋𝑋𝑗=𝑎𝑎𝑎𝑗

(𝑎𝑎𝑎𝑖) = 𝑃 (𝑋𝑋𝑋𝑖 ≤ 𝑎𝑎𝑎𝑖|𝑋𝑋𝑋𝑗 = 𝑎𝑎𝑎𝑗, 𝑗 ≠ 𝑖). Then, 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 are i.i.d.
if the conditional distributions equal the marginal distributions:

𝐹𝑋𝑋𝑋𝑖|𝑋𝑋𝑋𝑗=𝑎𝑎𝑎𝑗
(𝑎𝑎𝑎𝑖) = 𝐹𝑋𝑋𝑋𝑖

(𝑎𝑎𝑎𝑖) = 𝐹(𝑎𝑎𝑎𝑖) for all 𝑖 and 𝑎𝑎𝑎1, … ,𝑎𝑎𝑎𝑛 ∈ ℝ𝑘.

For more details on independence see Probability Tutorial Part 1

The Current Population Survey (CPS) involves random interviews with individuals from the
U.S. labor force and may be regarded as an i.i.d. sample. Methods that commonly yield i.i.d.
sampling for economic cross-sectional datasets include:

• Survey sampling with appropriate randomization
• Administrative records with random selection
• Direct observation of randomly chosen subjects
• Web scraping with randomized targets
• Field or laboratory experiments with random assignment

In a random sample there is no inherent ordering that would introduce systematic dependencies
between observations. If individuals 𝑖 and 𝑗 are truly randomly selected, then the observations
𝑋𝑋𝑋𝑖 and 𝑋𝑋𝑋𝑗 are independent random vectors. The order in which the observations appear in
the dataset is arbitrary and carries no information.

Clustered Sampling

While simple random sampling provides a clean theoretical foundation, real-world data often
exhibits clustering - where observations are naturally grouped or nested within larger units.
This clustering leads to dependencies that violate the i.i.d. assumption in two important
contexts:

In cross-sectional studies, clustering occurs when we collect data on individual units that belong
to distinct groups. Consider a study on student achievement where researchers randomly select
schools, then collect data from all students within those schools:

• Although schools might be selected independently, observations at the student level are
dependent

• Students within the same school share common environments (facilities, resources, ad-
ministration)
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• They experience similar teaching quality and educational policies and they influence each
other through peer effects and social interactions

For instance, if School A has an exceptional mathematics department, all students from that
school may perform better in math tests compared to students with similar abilities in other
schools.

Statistically, if 𝑌𝑖𝑘 represents the test score of student 𝑘 in school 𝑖:

• observations 𝑌𝑖𝑘 and 𝑌𝑗𝑙 are independent for 𝑖 ≠ 𝑗 (different students in different schools),
• observations 𝑌𝑖𝑘 and 𝑌𝑖𝑙are dependent (different students in the same school).

Panel Data Clustering

Panel data, by its very nature, introduces clustering across both cross-sectional units and time.
Recall the Fatalities dataset which tracks traffic fatalities across different states and years.

For panel data with 𝑛 states observed over 𝑇 years, we can represent the structure as:

• The vectors (𝑌𝑖1, … , 𝑌𝑖𝑇 ) are i.i.d. across units 𝑖 = 1, … , 𝑛 (different states’ time series
are independently sampled)

• But within each state 𝑖, the observations 𝑌𝑖1, … , 𝑌𝑖𝑇 are generally not independent from
each other

This structure reflects two important aspects of panel data:

• Unit independence: The complete time series for each state can be treated as an
independent draw from the population distribution of all possible state time series

• Temporal dependence: Within each state, observations across different years are
dependent due to persistent state-specific factors like road infrastructure, driving culture,
and enforcement practices

For instance, if California implements effective traffic safety measures, the effects will likely
persist across multiple years, creating a temporal correlation in that state’s fatality rates. Simi-
larly, economic downturns or changes in federal transportation policy may create dependencies
across all states in particular years.

Time Dependence

Time series and panel data are intrinsically not independent due to the sequential nature of
the observations. We usually expect observations close in time to be strongly dependent and
observations at greater temporal distances to be less dependent.
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Consider the quarterly GDP growth rates for Germany in the dataset gdpgr. Unlike cross-
sectional data where the ordering of observations is arbitrary, the chronological ordering in
time series carries crucial information about the dependency structure.

A simple way to formalize this temporal dependence is using an autoregression. If 𝑌𝑡 denotes
the GDP growth at time 𝑡, a first-order autoregressive representation can be written as:

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + 𝜀𝑡

where 𝜙0 is a constant, 𝜙1 captures the persistence from one period to the next, and 𝜀𝑡 is a
random disturbance.

If 𝜙1 ≠ 0, the current value 𝑌𝑡 directly depends on its previous value 𝑌𝑡−1. For GDP growth,
𝜙1 is typically positive, indicating that strong growth in one quarter predicts stronger growth
in the next quarter.

This time dependence means that the conditional distribution function differs from the
marginal distribution:

𝐹𝑌𝑡|𝑌𝑡−1,𝑌𝑡−2,...(𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, ...) ≠ 𝐹𝑌𝑡
(𝑦𝑡)

In contrast to the i.i.d. case, where 𝐹𝑌𝑖|𝑌𝑗
(𝑦𝑖|𝑦𝑗) = 𝐹𝑌𝑖

(𝑦𝑖) for 𝑖 ≠ 𝑗, time series observations
violate this independence property, making the i.i.d. assumption inappropriate for time series
analysis.

1.7 R-codes

metrics-sec01.R
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2 Summary Statistics

In statistics, a univariate dataset 𝑌1, … , 𝑌𝑛 or a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is often called
a sample. It typically represents observations collected from a larger population. The sample
distribution indicates how the sample values are distributed across possible outcomes.

Summary statistics, such as the sample mean and sample variance, provide a concise rep-
resentation of key characteristics of the sample distribution. These summary statistics are
related to the sample moments of a dataset.

2.1 Sample moments

The 𝑟-th sample moment about the origin (also called the 𝑟-th raw moment) is defined as

𝑌 𝑟 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 .

Mean

For example, the first sample moment (𝑟 = 1) is the sample mean (arithmetic mean):

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖.

The sample mean is the most common measure of central tendency. In i.i.d. samples, it
converges in probability to the expected value as sample size grows (law of large numbers).
This makes it a consistent estimator for the population mean:

𝑌
𝑝

→ 𝜇 = 𝐸[𝑌 ] as 𝑛 → ∞.

To compute the sample mean of a vector Y in R, use mean(Y) or alternatively sum(Y)/length(Y).
The r-th sample moment can be calculated with mean(Y^r).
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2.2 Central sample moments

The 𝑟-th central sample moment is the average of the 𝑟-th powers of the deviations from
the sample mean:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑟

Variance

For example, the second central moment (𝑟 = 2) is the sample variance:

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑌 2 − 𝑌 2.

The sample variance measures the spread or dispersion of the data around the sample mean.
It is a consistent estimator for the population variance

𝜎2 = 𝑉 𝑎𝑟(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])2] = 𝐸[𝑌 2] − 𝐸[𝑌 ]2

if the sample is i.i.d.

Standard Deviation

The sample standard deviation is the square root of the sample variance:

𝜎̂𝑌 = √𝜎̂2
𝑌 = √ 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = √𝑌 2 − 𝑌 2

It quantifies the typical deviation of data points from the sample mean in the original units of
measurement. It is a consistent estimator for the population standard deviation

𝑠𝑑(𝑌 ) = √𝑉 𝑎𝑟(𝑌 ).

2.3 Adjustments

Degrees of Freedom

When computing the sample mean 𝑌 , we have 𝑛 degrees of freedom because all data points
𝑌1, … , 𝑌𝑛 can vary freely.
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When computing variances, we take the sample mean of the squared deviations

(𝑌1 − 𝑌 )2, … , (𝑌𝑛 − 𝑌 )2.

These elements cannot vary freely because 𝑌 is computed from the same sample and implies
the constraint

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 ) = 0.

This means that the deviations are connected by this equation and are not all free to vary.
Knowing the first 𝑛 − 1 of the deviations determines the last one:

(𝑌𝑛 − 𝑌 ) = −
𝑛−1
∑
𝑖=1

(𝑌𝑖 − 𝑌 ).

Therefore, only 𝑛 − 1 deviations can vary freely, which results in 𝑛 − 1 degrees of freedom for
the sample variance.

Adjusted Sample Variance

Because ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 effectively contains only 𝑛 − 1 freely varying summands, it is common

to account for this fact. The adjusted sample variance uses 𝑛 − 1 in the denominator:

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

The adjusted sample variance relates to the unadjusted sample variance as:

𝑠2
𝑌 = 𝑛

𝑛 − 1𝜎̂2
𝑌 .

The adjusted sample standard deviation is:

𝑠𝑌 = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = √ 𝑛
𝑛 − 1𝜎̂𝑌 .

To compute the sample variance and sample standard deviation of a vector Y in R, use
mean(Y^2)-mean(Y)^2 and sqrt(mean(Y^2)-mean(Y)^2), respectively. The built-in func-
tions var(Y) and sd(Y) compute their adjusted versions.

Let’s compute the sample means, sample variances, and adjusted sample variances of some
variables from the cps dataset.
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cps = read.csv("cps.csv")
exper = cps$experience
wage = cps$wage
edu = cps$education
fem = cps$female

## Sample mean
c(mean(exper), mean(wage), mean(edu), mean(fem))

[1] 22.2071065 23.9026619 13.9246187 0.4257223

## Sample variance
c(mean(exper^2)- mean(exper)^2, mean(wage^2) - mean(wage)^2,
mean(edu^2) - mean(edu)^2, mean(fem^2) - mean(fem)^2)

[1] 136.1098206 428.9398785 7.5318408 0.2444828

## Adjusted sample variance
c(var(exper), var(wage), var(edu), var(fem))

[1] 136.1125031 428.9483320 7.5319892 0.2444876

While the unadjusted version (using 𝑛 in the denominator) yields a lower variance, it remains
biased in finite samples. In contrast, the adjusted version (using 𝑛 − 1) eliminates this bias at
the expense of slightly higher variance, illustrating a bias–variance tradeoff. In large samples,
however, the difference becomes negligible and both estimators yield practically the same
results.

2.4 Density estimation

A continuous random variable 𝑌 is characterized by a continuously differentiable CDF

𝐹(𝑎) = 𝑃(𝑌 ≤ 𝑎).

The derivative is known as the probability density function (PDF), defined as

𝑓(𝑎) = 𝐹 ′(𝑎).

There are several methods to estimate this density function from sample data.
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Histogram

Histograms offer an intuitive visual representation of the sample distribution of a variable. A
histogram divides the data range into 𝐵 bins, each of equal width ℎ, and counts the number
of observations 𝑛𝑗 within each bin. The height of the histogram at 𝑎 in the 𝑗-th bin is

̂𝑓(𝑎) = 𝑛𝑗
𝑛ℎ.

The histogram is the plot of these heights, displayed as rectangles, with their area normalized
so that the total area equals 1.

par(mfrow = c(2,2))
hist(exper, probability = TRUE)
hist(wage, probability = TRUE)
hist(edu, probability = TRUE)
hist(fem, probability = TRUE)
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Running hist(wage, probability=TRUE) automatically selects a suitable number of bins 𝐵.
Note that hist(wage) will plot absolute frequencies instead of relative ones. The shape of a
histogram depends on the choice of 𝐵. You can experiment with different values using the
breaks option:

par(mfrow = c(1,2))
hist(wage, probability = TRUE, breaks = 3)
hist(wage, probability = TRUE, breaks = 300)
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Histogram of wage
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Kernel density estimator

Suppose we want to estimate the wage density at 𝑎 = 22 and consider the histogram density
estimate with ℎ = 10. It is based on the frequency of observations in the interval [20, 30)
which is a skewed window about 𝑎 = 22.
It seems more sensible to center the window at 22, for example [17, 27) instead of [20, 30). It
also seems sensible to give more weight to observations close to 22 and less to those at the
edge of the window.

This idea leads to the kernel density estimator of 𝑓(𝑎), which is a smooth version of the
histogram:

̂𝑓(𝑎) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾(𝑋𝑖 − 𝑎
ℎ ).

Here, 𝐾(𝑢) represents a weighting function known as a kernel function, and ℎ > 0 is the
bandwidth. A common choice for 𝐾(𝑢) is the Gaussian kernel:

𝐾(𝑢) = 𝜙(𝑢) = 1√
2𝜋 exp(−𝑢2/2).

par(mfrow = c(1,2))
plot(density(wage))
hist(wage, probability=TRUE)
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The density() function in R automatically selects an optimal bandwidth, but it also allows
for manual bandwidth specification via density(wage, bw = your_bandwidth).

2.5 Higher Moments

The r-th standardized sample moment is the central moment normalized by the sample
standard deviation raised to the power of 𝑟. It is defined as:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌
𝜎̂𝑌

)
𝑟

Skewness

For example, the third standardized sample moment (𝑟 = 3) is the sample skewness:

ŝke(𝑌 ) = 1
𝑛𝜎̂3

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )3.

The skewness is a measure of asymmetry around the mean. A positive skewness indicates that
the distribution has a longer or heavier tail on the right side (right-skewed), while a negative
skewness indicates a longer or heavier tail on the left side (left-skewed). A perfectly symmetric
distribution, such as the normal distribution, has a skewness of 0.

For i.i.d. samples, the sample skewness is a consistent estimator for the population skewness

𝑠𝑘𝑒(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])3]
𝑠𝑑(𝑌 )3 .
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To compute the sample skewness in R, use:

mean((Y-mean(Y))^3)/(mean(Y^2)-mean(Y)^2)^(3/2)

For convenience, you can use the skewness(Y) function from the moments package, which
performs the same calculation.

library(moments)
c(skewness(exper), skewness(wage), skewness(edu), skewness(fem))

[1] 0.1862605 4.3201570 -0.2253251 0.3004446

Wages are right-skewed because a few very rich individuals earn much more than the many
with low to medium incomes. The other variables do not indicate any pronounced skewness.

Kurtosis

The sample kurtosis is the fourth standardized sample moment (𝑟 = 4), commonly denoted
as 𝑔2:

k̂ur(𝑌 ) = 1
𝑛𝜎̂4

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )4.

Kurtosis measures the “tailedness” or heaviness of the tails of a distribution and can indicate
the presence of extreme outliers. The reference value of kurtosis is 3, which corresponds to
the kurtosis of a normal distribution. Values greater than 3 suggest heavier tails, while values
less than 3 indicate lighter tails.

For i.i.d. samples, the sample kurtosis is a consistent estimator for the population kurtosis

𝑘𝑢𝑟(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])4]
𝑉 𝑎𝑟(𝑌 )2 .
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To compute the sample kurtosis in R, use:

mean((Y-mean(Y))^4)/(mean((Y-mean(Y))^2))^2

For convenience, you can use the kurtosis(Y) function from the moments package, which
performs the same calculation.

c(kurtosis(exper), kurtosis(wage), kurtosis(edu), kurtosis(fem))

[1] 2.374758 30.370331 4.498264 1.090267

The variable wage exhibits heavy tails due to a few super-rich outliers in the sample. In
contrast, fem has light tails because there are approximately equal numbers of women and
men.
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The plots display histograms of two standardized datasets (both have a sample mean of 0 and
a sample variance of 1). The left dataset has a normal sample kurtosis (around 3), while the
right dataset has a high sample kurtosis with heavier tails.

Kurtosis not only measures the heaviness of a distribution’s tails but also its peakedness. A
high kurtosis indicates that data are more concentrated around the mean and in the extremes,
meaning that extreme values occur more frequently than they would in a normal distribution.

In contrast, a low kurtosis signifies a flatter peak with lighter tails, suggesting fewer extreme
observations. In finance and risk management, these differences are crucial because they affect
the probability of rare but impactful events.

Some statistical software reports the excess kurtosis, which is defined as 𝑘𝑢𝑟 −3. This shifts
the reference value to 0 (instead of 3), making it easier to interpret: positive values indicate
heavier tails than the normal distribution, while negative values indicate lighter tails. For
example, the normal distribution has an excess kurtosis of 0.
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2.6 Logarithmic Transformations

Right-skewed, heavy-tailed variables are common in real-world datasets, such as income levels,
wealth accumulation, property values, insurance claims, and social media follower counts. A
common transformation to reduce skewness and kurtosis in data is to use the natural loga-
rithm:

par(mfrow = c(2,2))
hist(wage, probability = TRUE, breaks = 20, xlim = c(0,200))
hist(log(wage), probability = TRUE, breaks = 50, xlim = c(-1, 6))
plot(density(wage), xlim = c(0,200))
plot(density(log(wage)), xlim = c(-1, 6))
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c(skewness(wage), kurtosis(wage))

[1] 4.320157 30.370331
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c(skewness(log(wage)), kurtosis(log(wage)))

[1] -0.6990539 11.8566367

In econometrics, statistics, and many programming languages including R, log(⋅) is commonly
used to denote the natural logarithm (base e).

Note: On a pocket calculator, use LN to calculate the natural logarithm log(⋅) = log𝑒(⋅). If
you use LOG, you will calculate the logarithm with base 10, i.e., log10(⋅), which will give you
a different result. The relationship between these logarithms is log10(𝑥) = log𝑒(𝑥)/ log𝑒(10).

2.7 Bivariate Statistics

For a bivariate sample (𝑌1, 𝑍1), … , (𝑌𝑛, 𝑍𝑛), we can compute cross moments that describe the
relationship between the two variables. The (𝑟, 𝑠)-th sample cross moment is defined as:

𝑌 𝑟𝑍𝑠 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 𝑍𝑠

𝑖 .

The most important cross moment is the (1, 1)-th sample cross moment, or simply the first
sample cross moment:

𝑌 𝑍 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖𝑍𝑖.

The central sample cross moments are defined as:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑟(𝑍𝑖 − 𝑍)𝑠.

Covariance and Correlation

The (1, 1)-th central sample cross moment leads to the sample covariance:

𝜎̂𝑌 𝑍 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍) = 𝑌 𝑍 − 𝑌 ⋅ 𝑍.

Similar to the univariate case, we can define the adjusted sample covariance:

𝑠𝑌 𝑍 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍) = 𝑛
𝑛 − 1𝜎̂𝑌 𝑍.
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The sample correlation coefficient is the standardized sample covariance:

𝑟𝑌 𝑍 = 𝑠𝑌 𝑍
𝑠𝑌 𝑠𝑍

= ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍)

√∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2√∑𝑛

𝑖=1(𝑍𝑖 − 𝑍)2
= 𝜎̂𝑌 𝑍

𝜎̂𝑌 𝜎̂𝑍
.

If the sample is i.i.d., both 𝜎̂𝑌 𝑍 and 𝑠𝑌 𝑍 are consistent estimators for the population covari-
ance

𝜎𝑌 𝑍 = 𝐶𝑜𝑣(𝑌 , 𝑍) = 𝐸[(𝑌 − 𝐸[𝑌 ])(𝑍 − 𝐸[𝑍])].
The adjusted sample covariance 𝑠𝑌 𝑍 is unbiased, while 𝜎̂𝑌 𝑍 is biased but has a lower sam-
pling variance. Similarly, the sample correlation coefficient is a consistent estimator for the
population correlation coefficient

𝜌𝑌 𝑍 = 𝐶𝑜𝑟𝑟(𝑌 , 𝑍) = 𝐶𝑜𝑣(𝑌 , 𝑍)
√𝑉 𝑎𝑟(𝑌 )𝑉 𝑎𝑟(𝑍)

.

To compute these quantities for a bivariate sample collected in the vectors Y and Z, use
cov(Y,Z) for the adjusted sample covariance and cor(Y,Z) for the sample correlation.

cov(wage, edu)

[1] 21.82614

cor(wage, edu)

[1] 0.3839897

2.8 Moment Matrices

Consider a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛, such as the following subset of the cps dataset:

dat = data.frame(wage, edu, fem)
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Mean Vector

The sample mean vector 𝑋𝑋𝑋 contains the sample means of the 𝑘 variables and is defined
as

𝑋𝑋𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖.

For i.i.d. samples, the sample mean vector is a consistent estimator for the population mean
vector 𝐸[𝑋𝑋𝑋].

colMeans(dat)

wage edu fem
23.9026619 13.9246187 0.4257223

Covariance Matrix

The sample covariance matrix Σ̂ is the 𝑘 × 𝑘 matrix given by

Σ̂ = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′.

Its elements 𝜎̂ℎ,𝑙 represent the pairwise sample covariance between variables ℎ and 𝑙:

𝜎̂ℎ,𝑙 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙), 𝑋ℎ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖ℎ.

The adjusted sample covariance matrix 𝑆 is defined as

𝑆 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′

Its elements 𝑠ℎ,𝑙 are the adjusted sample covariances, with main diagonal elements 𝑠2
ℎ =

𝑠ℎ,ℎ being the adjusted sample variances:

𝑠ℎ,𝑙 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙).

If the sample is i.i.d., both Σ̂ and 𝑆 are consistent estimators for the population covariance
matrix

Σ = 𝑉 𝑎𝑟(𝑋𝑋𝑋) = 𝐸[(𝑋𝑋𝑋 − 𝐸[𝑋𝑋𝑋])(𝑋𝑋𝑋 − 𝐸[𝑋𝑋𝑋])′].
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The adjusted covariance matrix 𝑆 is unbiased, while Σ̂ is biased but has lower sampling
variance.

## Adjusted sample covariance matrix
cov(dat)

wage edu fem
wage 428.948332 21.82614057 -1.66314777
edu 21.826141 7.53198925 0.06037303
fem -1.663148 0.06037303 0.24448764

Correlation Matrix

The sample correlation coefficient between the variables ℎ and 𝑙 is the standardized sample
covariance:

𝑟ℎ,𝑙 = 𝑠ℎ,𝑙
𝑠ℎ𝑠𝑙

= ∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙)

√∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)2√∑𝑛

𝑖=1(𝑋𝑖𝑙 − 𝑋𝑙)2
= 𝜎̂ℎ,𝑙

𝜎̂ℎ𝜎̂𝑙
.

These coefficients form the sample correlation matrix 𝑅, expressed as:

𝑅 = 𝐷−1𝑆𝐷−1,

where 𝐷 is the diagonal matrix of adjusted sample standard deviations:

𝐷 = 𝑑𝑖𝑎𝑔(𝑠1, … , 𝑠𝑘) =
⎛⎜⎜⎜⎜
⎝

𝑠1 0 … 0
0 𝑠2 … 0
⋮ ⋱ ⋮
0 0 … 𝑠𝑘

⎞⎟⎟⎟⎟
⎠

The matrices Σ̂, 𝑆, and 𝑅 are symmetric.

cor(dat)

wage edu fem
wage 1.0000000 0.38398973 -0.16240519
edu 0.3839897 1.00000000 0.04448972
fem -0.1624052 0.04448972 1.00000000

We find a strong positive correlation between wage and edu, a substantial negative correlation
between wage and fem, and a negligible correlation between edu and fem.
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2.9 R-codes

metrics-sec02.R
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Part II

Linear Regression
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3 Least Squares

This section introduces the least squares method, focusing exclusively on its geometric and com-
putational aspects as an optimization problem that minimizes the sum of squared deviations
between observed and fitted values. The statistical properties of least squares, including the
formal linear model framework, hypothesis testing, and estimator properties, will be covered
in the next sections.

3.1 Regression Fundamentals

Regression Problem

The idea of regression analysis is to approximate a univariate dependent variable 𝑌𝑖 (also
known as the regressand or response variable) as a function of the 𝑘-variate vector of the
independent variables 𝑋𝑋𝑋𝑖 (also known as regressors or predictor variables). The relationship
is formulated as

𝑌𝑖 ≈ 𝑓(𝑋𝑋𝑋𝑖), 𝑖 = 1, … , 𝑛,
where 𝑌1, … , 𝑌𝑛 is a univariate dataset for the dependent variable and 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 a 𝑘-variate
dataset for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of 𝑌𝑖:

min
𝑓(⋅)

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2.

Linear Regression

If the regression function 𝑓(𝑋𝑋𝑋𝑖) is linear in 𝑋𝑋𝑋𝑖, i.e.,

𝑓(𝑋𝑋𝑋𝑖) = 𝑏1 + 𝑏2𝑋𝑖2 + … + 𝑏𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏, 𝑏𝑏𝑏 ∈ ℝ𝑘,

the minimization problem is known as the ordinary least squares (OLS) problem. The
coefficient vector has 𝑘 entries:

𝑏𝑏𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘)′.
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To avoid the unrealistic constraint of the regression line passing through the origin, a constant
term (intercept) is always included in 𝑋𝑋𝑋𝑖, typically as the first regressor:

𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′.

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining different variables), and
logarithmic transformations.

3.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector 𝑏𝑏𝑏 ∈ ℝ𝑘 is defined as

𝑆𝑛(𝑏𝑏𝑏) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

It is minimized by the least squares coefficient vector

̂𝛽𝛽𝛽 = argmin𝑏𝑏𝑏∈ℝ𝑘

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

Least squares coefficients

If the 𝑘 × 𝑘 matrix (∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖.

The fitted values or predicted values are

𝑌𝑖 = ̂𝛽1 + ̂𝛽2𝑋𝑖2 + … + ̂𝛽𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

The residuals are the difference between observed and fitted values:

𝑢̂𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.
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3.3 Regression Plots

Line Fitting

Let’s examine the linear relationship between average test scores and the student-teacher
ratio:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
fit1 = lm(score ~ STR, data = CASchools)
fit1$coefficients

(Intercept) STR
698.932949 -2.279808

We have
̂𝛽𝛽𝛽 = (698.9

−2.28) .

The fitted regression line is
698.9 − 2.28 STR.

We can plot the regression line over a scatter plot of the data:

par(mfrow = c(1,2), cex=0.8)
plot(score ~ STR, data = CASchools)
abline(fit1, col="blue")
plot(CASchools$STR, fit1$residuals)
abline(0, 0, col="blue")
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Multidimensional Visualizations

Let’s include the percentage of english learners as an additional regressor:

fit2= lm(score ~ STR + english, data = CASchools)
fit2$coefficients

(Intercept) STR english
686.0322445 -1.1012956 -0.6497768

A 3D plot provides a visual representation of the resulting regression line (surface):

OLS Regression Surface
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Adding the additional predictor income gives a regression specification with dimensions beyond
visual representation:

fit3 = lm(score ~ STR + english + income, data = CASchools)
fit3$coefficients

(Intercept) STR english income
640.31549821 -0.06877542 -0.48826683 1.49451661

The fitted regression line now includes three predictors and four coefficients:

640.3 − 0.07 STR − 0.49 english + 1.49 income

For specifications with multiple regressors, fitted values and residuals can still be visualized:
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par(mfrow = c(1,2), cex=0.8)
plot(fit3$fitted.values)
plot(fit3$residuals)
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The pattern of fitted values arises because the observations in the CASchools dataset are sorted
in ascending order by test score.

3.4 Matrix notation

OLS Formula

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector 𝑌𝑌𝑌 and the regressor matrix (design matrix) 𝑋𝑋𝑋 as
follows:

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑋𝑋𝑋′
1

𝑋𝑋𝑋′
2

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1 𝑋12 … 𝑋1𝑘
⋮ ⋮
1 𝑋𝑛2 … 𝑋𝑛𝑘

⎞⎟
⎠

Note that ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 = 𝑋𝑋𝑋′𝑋𝑋𝑋 and ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .

The least squares coefficient vector becomes

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

The vector of fitted values can be computed as follows:

𝑌𝑌𝑌 = ⎛⎜⎜
⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

= 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .
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Residuals

The vector of residuals is given by

̂𝑢𝑢𝑢 = ⎛⎜
⎝

𝑢̂1
⋮

𝑢̂𝑛

⎞⎟
⎠

= 𝑌𝑌𝑌 − 𝑌𝑌𝑌 = 𝑌𝑌𝑌 − 𝑋𝑋𝑋 ̂𝛽𝛽𝛽.

An important property of the residual vector is: 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 = 000. To see that this property holds,
let’s rearrange the OLS formula:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 ⇔ 𝑋𝑋𝑋′𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .

The dependent dependent variable vector can be decomposed into the vector of fitted values
and the residual vector:

𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 + ̂𝑢𝑢𝑢.
Substituting this into the OLS formula from above gives:

𝑋𝑋𝑋′𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋′(𝑋𝑋𝑋 ̂𝛽𝛽𝛽 + ̂𝑢𝑢𝑢) ⇔ 000 = 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢.

This property has a geometric interpretation: it means the residuals are orthogonal to all
regressors. This makes sense because if there were any linear relationship left between the
residuals and the regressors, we could have captured it in our model to improve the fit.

3.5 Goodness of Fit

Analysis of Variance

The orthogonality property of the residual vector can be written in a more detailed way as
follows:

𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 =
⎛⎜⎜⎜⎜
⎝

∑𝑛
𝑖=1 𝑢̂𝑖

∑𝑛
𝑖=1 𝑋𝑖2𝑢̂𝑖

⋮
∑𝑛

𝑖=1 𝑋𝑖𝑘𝑢̂𝑖

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0
0
⋮
0

⎞⎟⎟⎟⎟
⎠

. (3.1)

In particular, the sample mean of the residuals is zero:

1
𝑛

𝑛
∑
𝑖=1

𝑢̂𝑖 = 0.

Therefore, the sample variance of the residuals is simply the sample mean of squared residu-
als:

𝜎̂2
𝑢̂ = 1

𝑛
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .
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The sample variance of the dependent variable is

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2,

and the sample variance of the fitted values is

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

The three sample variances are connected through the analysis of variance formula:

𝜎̂2
𝑌 = 𝜎̂2

𝑌 + 𝜎̂2
𝑢̂.

Hence, the larger the proportion of the explained sample variance, the better the fit of the
OLS regression.

R-squared

The analysis of variance formula motivates the definition of the R-squared coefficient:

𝑅2 = 1 − 𝜎̂2
𝑢̂

𝜎̂2
𝑌

= 1 − ∑𝑛
𝑖=1 𝑢̂2

𝑖
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 .

The R-squared describes the proportion of sample variation in 𝑌𝑌𝑌 explained by 𝑌𝑌𝑌 . We have
0 ≤ 𝑅2 ≤ 1.
In a regression of 𝑌𝑖 on a single regressor 𝑍𝑖 with intercept (simple linear regression), the
R-squared is equal to the squared sample correlation coefficient of 𝑌𝑖 and 𝑍𝑖.

An R-squared of 0 indicates no sample variation in 𝑌𝑌𝑌 (a flat regression line/surface), whereas
a value of 1 indicates no variation in ̂𝑢𝑢𝑢, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in 𝑌𝑌𝑌 that is not captured
by the regressors 𝑋𝑋𝑋 linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If 𝑘 = 𝑛, we have 𝑅2 = 1 even if none of the regressors has an actual influence on the dependent
variable.
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Adjusted R-squared

Recall that the deviations (𝑌𝑖−𝑌 ) cannot vary freely because they are subject to the constraint
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 ), which is why we lose 1 degree of freedom in the sample variance of 𝑌𝑌𝑌 .

For the sample variance of ̂𝑢𝑢𝑢, we loose 𝑘 degrees of freedom because the residuals are subject to
the constraints from Equation 3.1. The adjusted sample variance of the residuals is therefore
defined as:

𝑠2
𝑢̂ = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

By incorporating adjusted versions in the R-squared definition, we penalize regression specifi-
cations with large 𝑘. The adjusted R-squared is

𝑅2 = 1 −
1

𝑛−𝑘 ∑𝑛
𝑖=1 𝑢̂2

𝑖
1

𝑛−1 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 = 1 − 𝑠2

𝑢̂
𝑠2

𝑌
.

The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

3.6 Regression Table

The modelsummary() function can be used to produce comparison tables of regression out-
puts:

library(modelsummary)
mymodels = list(fit1, fit2, fit3)
modelsummary(mymodels,

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

Model (3) explains the most variation in test scores and provides the best fit to the data, as
indicated by the highest 𝑅2 and the lowest residual standard error.

In model (1), schools with one more student per class are predicted to have a 2.28-point lower
test score. This effect decreases to 1.1 points in model (2), after accounting for the percentage
of English learners, and drops further to just 0.07 points in model (3), once income is also
included.
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(1) (2) (3)
(Intercept) 698.933 686.032 640.315
STR −2.280 −1.101 −0.069
english −0.650 −0.488
income 1.495
Num.Obs. 420 420 420
R2 0.051 0.426 0.707
R2 Adj. 0.049 0.424 0.705
RMSE 18.54 14.41 10.30

The Root Mean Squared Error (RMSE) is the squareroot of the mean squared error of
the residuals:

𝑅𝑀𝑆𝐸( ̂𝛽𝛽𝛽) = 𝜎̂𝑢̂ = √ 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖 .

While the R-squared increases in the number of regressors, the RMSE decreases.

To give deeper meaning to these results and understand their interpretation within a broader
context, we turn to a formal probabilistic model framework in the next section.

3.7 When OLS Fails

Too many regressors

OLS should be considered for regression problems with 𝑘 << 𝑛 (small 𝑘 and large 𝑛). When
the number of predictors 𝑘 approaches or equals the number of observations 𝑛, we run into the
problem of overfitting. Specifically, at 𝑘 = 𝑛, the regression line will perfectly fit the data.
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If 𝑘 = 𝑛 ≥ 4, we can no longer visualize the OLS regression line in the 3D space, but the
problem of a perfect fit is still present. If 𝑘 > 𝑛, there exists no unique OLS solution because
𝑋𝑋𝑋′𝑋𝑋𝑋 is not invertible. Regression problems with 𝑘 ≈ 𝑛 or 𝑘 > 𝑛 are called high-dimensional
regressions.

Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋.
As discussed above, a necessary condition is that 𝑘 ≤ 𝑛.
Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).

Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(𝑋𝑋𝑋) < 𝑘. It implies rank(𝑋𝑋𝑋′𝑋𝑋𝑋) < 𝑘, so that the matrix is singular
and ̂𝛽𝛽𝛽 cannot be computed.

Near multicollinearity occurs when two columns of 𝑋𝑋𝑋 have a sample correlation very close
to 1 or -1. Then, (𝑋𝑋𝑋′𝑋𝑋𝑋) is “near singular”, its eigenvalues are very small, and (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

becomes very large, causing numerical problems.

If 𝑘 ≤ 𝑛 and multicollinearity is present, it means that at least one regressor is redundant and
can be dropped.
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Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
consider the cps data and add a dummy variable for non-married individuals:

cps = read.csv("cps.csv")
cps$nonmarried = 1-cps$married
fit4 = lm(wage ~ married + nonmarried, data = cps)
fit4$coefficients

(Intercept) married nonmarried
19.338695 6.997155 NA

The coefficient for nonmarried is NA. We fell into the dummy variable trap!

The dummy variables married and nonmarried are collinear with the intercept variable be-
cause 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + 𝑛𝑜𝑛𝑚𝑎𝑟𝑟𝑖𝑒𝑑 = 1, which leads to a singular matrix 𝑋𝑋𝑋′𝑋𝑋𝑋 and therefore to
perfect multicollinearity.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Another solution would be to remove the intercept from
the model, which can be done by adding -1 to the model formula:

fit5 = lm(wage ~ married + nonmarried - 1, data = cps)
fit5$coefficients

married nonmarried
26.33585 19.33869

3.8 R-codes

metrics-sec03.R
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4 Linear Model

4.1 Conditional Expectation

In econometrics, we often analyze how a variable of interest (like wages) varies systematically
with other variables (like education or experience). The conditional expectation function
(CEF) provides a powerful framework for describing these relationships.

The conditional expectation of 𝑌 given 𝑋 is the expected value of 𝑌 for each possible value
of 𝑋. For a continuous random variable 𝑌 we have

𝐸[𝑌 |𝑋 = 𝑥] = ∫
∞

−∞
𝑦 𝑓𝑌 |𝑋(𝑦|𝑥) 𝑑𝑦

where 𝑓𝑌 |𝑋(𝑦|𝑥) is the conditional density of 𝑌 given 𝑋 = 𝑥.
The CEF maps values of 𝑋 to corresponding conditional means of 𝑌 . As a function of the
random variable 𝑋, the CEF itself is a random variable:

𝐸[𝑌 |𝑋] = 𝑚(𝑋), where 𝑚(𝑥) = 𝐸[𝑌 |𝑋 = 𝑥]

For a comprehensive treatment of conditional expectations see Probability Tutorial
Part 2

Examples

Let’s examine this concept using wage and education as examples. When 𝑋 is discrete (such
as years of education), we can analyze how wage distributions change across education levels
by comparing their conditional distributions:

Notice how the conditional distributions shift rightward as education increases, indicating
higher average wages with higher education.

From these conditional densities, we can compute the expected wage for each education level.
Plotting these conditional expectations gives the CEF:

𝑚(𝑥) = 𝐸[wage ∣ edu = 𝑥]
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(a) Unconditional density of wage (b) Conditional density of wage given different years
of education

Figure 4.1: Unconditional density 𝑓(𝑦) and conditional densities 𝑓𝑌 |𝑋(𝑦|𝑥) of wage given 𝑥
years of education

Since education is discrete, the CEF is defined only at specific values, as shown in the left plot
below:

(a) CEF of wage given education (b) CEF of wage given experience

Figure 4.2: Conditional expectations of wage given education (left) and experience (right)

When 𝑋 is continuous (like years of experience), the CEF becomes a smooth function (right
plot). The shape of 𝐸[wage|experience] reflects real-world patterns: wages rise quickly early
in careers, then plateau, and may eventually decline near retirement.

The CEF as a Random Variable

It’s important to distinguish between:

• 𝐸[𝑌 |𝑋 = 𝑥]: a number (the conditional mean at a specific value)
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• 𝐸[𝑌 |𝑋]: a function of 𝑋, which is itself a random variable

For instance, if 𝑋 = education has the probability mass function:

𝑃(𝑋 = 𝑥) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑥 = 10
0.43 if 𝑥 = 12
0.16 if 𝑥 = 14
0.08 if 𝑥 = 16
0.24 if 𝑥 = 18
0.03 if 𝑥 = 21
0 otherwise

Then 𝐸[𝑌 |𝑋] as a random variable has the probability mass function:

𝑃(𝐸[𝑌 |𝑋] = 𝑦) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑦 = 11.68 (when 𝑋 = 10)
0.43 if 𝑦 = 14.26 (when 𝑋 = 12)
0.16 if 𝑦 = 17.80 (when 𝑋 = 14)
0.08 if 𝑦 = 16.84 (when 𝑋 = 16)
0.24 if 𝑦 = 21.12 (when 𝑋 = 18)
0.03 if 𝑦 = 27.05 (when 𝑋 = 21)
0 otherwise

The CEF assigns to each value of 𝑋 the expected value of 𝑌 given that information.

4.2 CEF Properties

The conditional expectation function has several important properties that make it a funda-
mental tool in econometric analysis.

Law of Iterated Expectations (LIE)

The law of iterated expectations connects conditional and unconditional expectations:

𝐸[𝑌 ] = 𝐸[𝐸[𝑌 |𝑋]]

This means that to compute the overall average of 𝑌 , we can first compute the average of 𝑌
within each group defined by 𝑋, then average those conditional means using the distribution
of 𝑋.
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This is analogous to the law of total probability, where we compute marginal probabilities or
densities as weighted averages of conditional ones:

When 𝑋 is discrete:

𝑃(𝑌 = 𝑦) = ∑
𝑥

𝑃(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝑓𝑌 (𝑦) = ∫

∞

−∞
𝑓𝑌 |𝑋(𝑦 ∣ 𝑥) ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Similarly, the LIE states:

When 𝑋 is discrete:
𝐸[𝑌 ] = ∑

𝑥
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝐸[𝑌 ] = ∫

∞

−∞
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Let’s apply this to our wage and education example. With 𝑋 = education and 𝑌 = wage, we
have:

𝐸[𝑌 |𝑋 = 10] = 11.68, 𝑃 (𝑋 = 10) = 0.06
𝐸[𝑌 |𝑋 = 12] = 14.26, 𝑃 (𝑋 = 12) = 0.43
𝐸[𝑌 |𝑋 = 14] = 17.80, 𝑃 (𝑋 = 14) = 0.16
𝐸[𝑌 |𝑋 = 16] = 16.84, 𝑃 (𝑋 = 16) = 0.08
𝐸[𝑌 |𝑋 = 18] = 21.12, 𝑃 (𝑋 = 18) = 0.24
𝐸[𝑌 |𝑋 = 21] = 27.05, 𝑃 (𝑋 = 21) = 0.03

The law of iterated expectations gives us:

𝐸[𝑌 ] = ∑
𝑥

𝐸[𝑌 |𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

= 11.68 ⋅ 0.06 + 14.26 ⋅ 0.43 + 17.80 ⋅ 0.16
+ 16.84 ⋅ 0.08 + 21.12 ⋅ 0.24 + 27.05 ⋅ 0.03

= 0.7008 + 6.1318 + 2.848 + 1.3472 + 5.0688 + 0.8115
= 16.91

This unconditional expected wage of 16.91 aligns with what we would calculate from the
unconditional density. The LIE provides us with a powerful way to bridge conditional expec-
tations (within education groups) and the overall unconditional expectation (averaging across
all education levels).
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Conditioning Theorem (CT)

The conditioning theorem (also called the factorization rule) states:

𝐸[𝑔(𝑋)𝑌 ∣ 𝑋] = 𝑔(𝑋) ⋅ 𝐸[𝑌 ∣ 𝑋]

This means that when taking the conditional expectation of a product where one factor is a
function of the conditioning variable, that factor can be treated as a constant and factored
out. Once we condition on 𝑋, the value of 𝑔(𝑋) is fixed.

If 𝑌 = wage and 𝑋 = education, then for someone with 16 years of education:

𝐸[16 ⋅ wage ∣ edu = 16] = 16 ⋅ 𝐸[wage ∣ edu = 16]

More generally, if we want to find the expected product of education and wage, conditional on
education:

𝐸[edu ⋅ wage ∣ edu] = edu ⋅ 𝐸[wage ∣ edu]

Best Predictor Property

The conditional expectation 𝐸[𝑌 |𝑋] is the best predictor of 𝑌 given 𝑋 in terms of mean
squared error:

𝐸[𝑌 |𝑋] = argmin
𝑔(⋅)

𝐸[(𝑌 − 𝑔(𝑋))2]

This means that among all possible functions of 𝑋, the CEF minimizes the expected squared
prediction error. In practical terms, if you want to predict wages based only on education, the
optimal prediction is exactly the conditional mean wage for each education level.

For example, if someone has 18 years of education, our best prediction of their wage (minimiz-
ing expected squared error) is 𝐸[wage|education = 18] = 21.12.
No other function of education, whether linear, quadratic, or more complex, can yield a better
prediction in terms of expected squared error than the CEF itself.

Independence Implications

If 𝑌 and 𝑋 are independent, then:

𝐸[𝑌 |𝑋] = 𝐸[𝑌 ]

When variables are independent, knowing 𝑋 provides no information about 𝑌 , so the condi-
tional expectation equals the unconditional expectation. The CEF becomes a constant function
that doesn’t vary with 𝑋.
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In our wage example, if education and wage were completely independent, the CEF would be a
horizontal line at the overall average wage of 16.91. Each conditional density 𝑓𝑌 |𝑋(𝑦|𝑥) would
be identical to the unconditional density 𝑓(𝑦), and the conditional means would all equal the
unconditional mean.

The fact that our CEF for wage given education has a positive slope indicates that these
variables are not independent—higher education is associated with higher expected wages.

4.3 Linear Model Specification

Prediction Error

Consider a sample {(𝑌𝑖,𝑋𝑋𝑋𝑖)}𝑛
𝑖=1. We have established that the conditional expectation

function (CEF) 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] is the best predictor of 𝑌𝑖 given 𝑋𝑋𝑋𝑖, minimizing the mean squared
prediction error.

This leads to the following prediction error:

𝑢𝑖 = 𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]

By construction, this error has a conditional mean of zero:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0

This zero conditional mean property follows directly from the law of iterated expectations:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] − 𝐸[𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] − 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0

We can thus always decompose the outcome as:

𝑌𝑖 = 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] + 𝑢𝑖

where 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0. This equation is not yet a regression model. It’s simply the decomposition
of 𝑌𝑖 into its conditional expectation and an unpredictable component.
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Linear Regression Model

To move to a regression framework, we impose a structural assumption about the form of the
CEF. The key assumption of the linear regression model is that the conditional expectation
is a linear function of the regressors:

𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽

Substituting this into our decomposition yields the linear regression equation:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 (4.1)

with the crucial assumption:
𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 (4.2)

Exogeneity

This assumption (Equation 9.3) is called exogeneity or mean independence. It ensures
that the linear function 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 correctly captures the conditional mean of 𝑌𝑖.

Under the linear regression equation (Equation 4.1) we have the following equivalence:

𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 ⇔ 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0

Therefore, the linear regression model in its most general form is characterized by the two con-
ditions: linear regression equation (Equation 4.1) and exogenous regressors (Equation 9.3).

For example, in a wage regression, exogeneity means that the expected wage conditional on
education and experience is exactly captured by the linear combination of these variables. No
systematic pattern remains in the error term.

Model Misspecification

If the true conditional expectation function is nonlinear (e.g., if wages increase with education
at a diminishing rate), then 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] ≠ 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽, and the model is misspecified. In such cases,
the linear model provides the best linear approximation to the true CEF, but systematic
patterns remain in the error term.

It’s important to note that 𝑢𝑖 may still be statistically dependent on 𝑋𝑋𝑋𝑖 in ways other than its
mean. For example, the variance of 𝑢𝑖 may depend on 𝑋𝑋𝑋𝑖 in the case of heteroskedasticity.
For instance, wage dispersion might increase with education level. The assumption 𝐸[𝑢𝑖 ∣
𝑋𝑋𝑋𝑖] = 0 requires only that the conditional mean of the error is zero, not that the error is
completely independent of the regressors.
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4.4 Population Regression Coefficient

Under the linear model
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0,
we are interested in the population regression coefficient 𝛽𝛽𝛽, which indicates how the
conditional mean of 𝑌𝑖 varies linearly with the regressors in 𝑋𝑋𝑋𝑖.

Moment Condition

A key implication of the exogeneity condition 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 is that the regressors are mean
uncorrelated with the error term:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000

This can be derived from the exogeneity condition using the law of iterated expectations:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝐸[𝑋𝑋𝑋𝑖𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 0] = 000

Substituting the linear model into the mean uncorrelatedness condition gives a moment con-
dition that identifies 𝛽𝛽𝛽:

000 = 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝑋𝑋𝑋𝑖(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽)] = 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] − 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Rearranging to solve for 𝛽𝛽𝛽:
𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Assuming that the matrix 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is invertible, we can express the population regression

coefficient as:
𝛽𝛽𝛽 = (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖]

This expression shows that 𝛽𝛽𝛽 is entirely determined by the joint distribution of (𝑌𝑖,𝑋𝑋𝑋′
𝑖) in the

population.

The invertibility of 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is guaranteed if there is no perfect linear relationship among the

regressors. In particular, no pair of regressors should be perfectly correlated, and no regressor
should be a perfect linear combination of the other regressors.
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OLS Estimation

To estimate 𝛽𝛽𝛽 from data, we replace population moments with sample moments. Given a
sample {(𝑌𝑖,𝑋𝑋𝑋𝑖)}𝑛

𝑖=1, the ordinary least squares (OLS) estimator is:

̂𝛽𝛽𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖)

This can be simplified to the familiar form:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌

The OLS estimator solves the sample moment condition:

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽) = 000

or equivalently:
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢̂𝑖 = 000

where 𝑢̂𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽 are the sample residuals.

In this framework, OLS can be viewed as a method of moments estimator, solving the
sample analogue of the population moment condition 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000. The method of moments
principle replaces theoretical moments with their empirical counterparts to obtain estimates
of unknown parameters.

4.5 Marginal Effects

Consider the regression model of hourly wage on education (years of schooling),

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖, 𝑖 = 1, … , 𝑛,

where the exogeneity assumption holds:

𝐸[𝑢𝑖|edu𝑖] = 0.
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The population regression function, which gives the conditional expectation of wage given
education, can be derived as:

𝑚(edu𝑖) = 𝐸[wage𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝐸[𝑢𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖

Thus, the average wage level of all individuals with 𝑧 years of schooling is:

𝑚(𝑧) = 𝛽1 + 𝛽2 ⋅ 𝑧.

Interpretation of Coefficients

In the linear regression model
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑢𝑖,
the coefficient vector 𝛽𝛽𝛽 captures the way the conditional mean of 𝑌𝑖 changes with the
regressors 𝑋𝑋𝑋𝑖. Under the exogeneity assumption,

𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 = 𝛽1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘.

This linearity allows for a simple interpretation. The coefficient 𝛽𝑗 represents the partial
derivative of the conditional mean with respect to 𝑋𝑖𝑗:

𝜕𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕𝑋𝑖𝑗

= 𝛽𝑗.

This means that 𝛽𝑗 measures the marginal effect of a one-unit increase in 𝑋𝑖𝑗 on the expected
value of 𝑌𝑖, holding all other variables constant.

If 𝑋𝑖𝑗 is a dummy variable (i.e., binary), then 𝛽𝑗 measures the discrete change in 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖]
when 𝑋𝑖𝑗 changes from 0 to 1.

For our wage-education example, the marginal effect of education is:

𝜕𝐸[wage𝑖|edu𝑖]
𝜕edu𝑖

= 𝛽2.

This theoretical population parameter can be estimated using OLS:

cps = read.csv("cps.csv")
lm(wage ~ education, data = cps)

66



Call:
lm(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education

-16.448 2.898

Interpretation: People with one more year of education are paid on average $2.90 USD more per
hour than people with one year less of education, assuming the exogeneity condition holds.

Correlation vs. Causation

The coefficient 𝛽2 describes the correlative relationship between education and wages, not
necessarily a causal one. To see this connection to correlation, consider the covariance of the
two variables:

𝐶𝑜𝑣(wage𝑖, edu𝑖) = 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝑢𝑖, edu𝑖)
= 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖, edu𝑖) + 𝐶𝑜𝑣(𝑢𝑖, edu𝑖)

The term 𝐶𝑜𝑣(𝑢𝑖, edu𝑖) equals zero due to the exogeneity assumption. To see this, recall that
𝐸[𝑢𝑖] = 𝐸[𝐸[𝑢𝑖|edu𝑖]] = 0 by the LIE and 𝐸[𝑢𝑖edu𝑖] = 0 by mean uncorrelatedness, which
implies

𝐶𝑜𝑣(𝑢𝑖, edu𝑖) = 𝐸[𝑢𝑖edu𝑖] − 𝐸[𝑢𝑖] ⋅ 𝐸[edu𝑖] = 0

The coefficient 𝛽2 is thus proportional to the population correlation coefficient:

𝛽2 = 𝐶𝑜𝑣(wage𝑖, edu𝑖)
𝑉 𝑎𝑟(edu𝑖)

= 𝐶𝑜𝑟𝑟(wage𝑖, edu𝑖) ⋅ 𝑠𝑑(wage𝑖)
𝑠𝑑(edu𝑖)

.

The marginal effect is a correlative effect and does not necessarily reveal the source of the
higher wage levels for people with more education.

Regression relationships do not necessarily imply causal relationships.

People with more education may earn more for various reasons:

• They might be naturally more talented or capable
• They might come from wealthier families with better connections
• They might have access to better resources and opportunities
• Education itself might actually increase productivity and earnings
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Figure 4.3: A DAG (directed acyclic graph) showing potential confounding factors in the
education-wage relationship

The coefficient 𝛽2 measures how strongly education and earnings are correlated, but this
association could be due to other factors that correlate with both wages and education, such
as:

• Family background (parental education, family income, ethnicity)
• Personal background (gender, intelligence, motivation)

Remember: Correlation does not imply causation!

Omitted Variable Bias

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) is correlated with the dependent variable (wage𝑖, in this scenario)

(ii) is correlated with the regressor of interest (edu𝑖)

(iii) is omitted in the regression

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.
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The coefficient 𝛽2 in the simple regression model measures the correlative or marginal effect, not
the causal effect. This must always be kept in mind when interpreting regression coefficients.

Control Variables

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret 𝛽2 as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as racial background and gender dummy
variables for Black and female:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3exper𝑖 + 𝛽4Black𝑖 + 𝛽5fem𝑖 + 𝑢𝑖.

In this case,

𝛽2 = 𝜕𝐸[wage𝑖|edu𝑖, exper𝑖,Black𝑖, fem𝑖]
𝜕edu𝑖

is the marginal effect of education on expected wages, holding experience, race, and gender
fixed.

lm(wage ~ education + experience + Black + female, data = cps)

Call:
lm(formula = wage ~ education + experience + Black + female,

data = cps)

Coefficients:
(Intercept) education experience Black female

-21.7095 3.1350 0.2443 -2.8554 -7.4363

Interpretation of coefficients:

• Education: Given the same experience, racial background, and gender, people with one
more year of education are paid on average $3.14 USD more than people with one year
less of education.

• Experience: Each additional year of experience is associated with an average wage
increase of $0.24 USD per hour, holding other factors constant.

• Black: Black workers earn on average $2.86 USD less per hour than non-Black workers
with the same education, experience, and gender.

• Female: Women earn on average $7.43 USD less per hour than men with the same
education, experience, and racial background.
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Note: This regression does not control for other unobservable characteristics (such as ability)
or variables not included in the regression (such as quality of education), so omitted variable
bias may still be present.

Good vs. Bad Controls

It’s important to recognize that control variables are always selected with respect to a par-
ticular regressor of interest. A researcher typically focuses on estimating the effect of one
specific variable (like education), and control variables must be designed specifically for this
relationship.

In causal inference terminology, we can distinguish between different types of variables:

• Confounders: Variables that affect both the regressor of interest and the outcome.
These are good controls because they help isolate the causal effect of interest.

• Mediators: Variables through which the regressor of interest affects the outcome. Con-
trolling for mediators can block part of the causal effect we’re trying to estimate.

• Colliders: Variables that are affected by both the regressor of interest and the outcome
(or by factors that determine the outcome). Controlling for colliders can create spurious
associations.

Confounders

Examples of good controls (confounders) for education are:

• Parental education level (affects both a person’s education and their wage potential)
• Region of residence (geographic factors can influence education access and job markets)
• Family socioeconomic background (affects educational opportunities and wage potential)

Figure 4.4: A DAG of the education-wage relationship with family confounder
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Mediators and Colliders

Examples of bad controls include:

• Mediators: Variables that are part of the causal pathway from education to wages

– Current job position (education → job position → wage)
– Professional sector (education may determine which sector someone works in)
– Number of professional certifications (likely a result of education level)

Figure 4.5: A DAG of the education-wage relationship with job position mediator

• Colliders: Variables affected by both education and wages (or their determinants)

– Happiness/life satisfaction (might be affected independently by both education and
wages)

– Work-life balance (both education and wages might affect this independently)

Figure 4.6: A DAG of the education-wage relationship with happiness collider
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Bad controls create two problems:

1. Statistical issue: High correlation with the variable of interest (like education) causes
high variance in the coefficient estimate (imperfect multicollinearity).

2. Causal inference issue: They distort the relationship we’re trying to estimate by either
blocking part of the causal effect (mediators) or creating artificial associations (colliders).

Good control variables are typically determined before the level of education is determined,
while bad controls are often outcomes of the education process itself or are jointly determined
with wages.

The appropriate choice of control variables requires not just statistical knowledge but also
subject-matter expertise about the causal structure of the relationships being studied.

4.6 Application: Class Size Effect

Let’s apply these concepts to a real-world research question: How does class size affect student
performance?

Recall the CASchools dataset used in the Stock and Watson textbook, which contains infor-
mation on California school characteristics:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2

We are interested in the effect of the student-teacher ratio STR (class size) on the average
test score score. Following our previous discussion on causal inference, we need to consider
potential confounding factors that might affect both class sizes and test scores.

Control Strategy

Let’s examine several control variables:

• english: proportion of students whose primary language is not English.
• lunch: proportion of students eligible for free/reduced-price meals.
• expenditure: total expenditure per pupil.

First, we should check whether these variables are correlated with both our regressor of interest
(STR) and the outcome (score):
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(1) (2) (3) (4)
(Intercept) 698.933 686.032 700.150 665.988
STR −2.280 −1.101 −0.998 −0.235
english −0.650 −0.122 −0.128
lunch −0.547 −0.546
expenditure 0.004
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
RMSE 18.54 14.41 9.04 8.86

library(dplyr)
CASchools |> select(STR, score, english, lunch, expenditure) |> cor()

STR score english lunch expenditure
STR 1.0000000 -0.2263627 0.18764237 0.13520340 -0.61998216
score -0.2263627 1.0000000 -0.64412381 -0.86877199 0.19127276
english 0.1876424 -0.6441238 1.00000000 0.65306072 -0.07139604
lunch 0.1352034 -0.8687720 0.65306072 1.00000000 -0.06103871
expenditure -0.6199822 0.1912728 -0.07139604 -0.06103871 1.00000000

The correlation matrix reveals that english, lunch, and expenditure are indeed correlated
with both STR and score. This suggests they could be confounders that, if omitted, might
bias our estimate of the class size effect.

Let’s implement a control strategy, adding potential confounders one by one to see how the
estimated marginal effect of class size changes:

fit1 = lm(score ~ STR, data = CASchools)
fit2 = lm(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = lm(score ~ STR + english + lunch + expenditure, data = CASchools)
library(modelsummary)
mymodels = list(fit1, fit2, fit3, fit4)
modelsummary(mymodels,

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))
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Interpretation of Marginal Effects

Let’s interpret the coefficients on STR from each model more precisely:

• Model (1): Between two classes that differ by one student, the class with more students
scores on average 2.280 points lower. This represents the unadjusted association without
controlling for any confounding factors.

• Model (2): Between two classes that differ by one student but have the same share of
English learners, the larger class scores on average 1.101 points lower. Controlling for
English learner status cuts the estimated effect by more than half.

• Model (3): Between two classes that differ by one student but have the same share
of English learners and students with reduced meals, the larger class scores on average
0.998 points lower. Adding this socioeconomic control further reduces the estimated
effect slightly.

• Model (4): Between two classes that differ by one student but have the same share
of English learners, students with reduced meals, and per-pupil expenditure, the larger
class scores on average 0.235 points lower. This represents a dramatic reduction from
the previous model.

The sequential addition of controls demonstrates how sensitive the estimated marginal effect
is to model specification. Each coefficient represents the partial derivative of the expected test
score with respect to the student-teacher ratio, holding constant the variables included in that
particular model.

Identifying Good and Bad Controls

Based on our causal framework from the previous section, we can evaluate our control vari-
ables:

• Confounders (good controls): english and lunch are likely good controls be-
cause they represent pre-existing student characteristics that influence both class size
assignments (schools might create smaller classes for disadvantaged students) and test
performance.

• Mediator (bad control): expenditure appears to be a bad control because it’s
likely a mediator in the causal pathway from class size to test scores. Smaller classes
mechanically increase per-pupil expenditure through higher teacher salary costs per stu-
dent.
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The causal relationship can be visualized as:

Class Size → Expenditure → Test Scores

When we control for expenditure, we block this causal pathway and “control away” part of
the effect we actually want to measure. This explains the dramatic drop in the coefficient in
Model (4) and suggests this model likely underestimates the true effect of class size.

This application demonstrates the crucial importance of thoughtful control variable selection in
regression analysis. The estimated marginal effect of class size on test scores varies substantially
depending on which variables we control for. Based on causal reasoning, we should prefer
Model (3) with the appropriate confounders but without the mediator.

4.7 Nonlinear Modeling

Polynomials

A linear dependence on wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

wage𝑖 = 𝛽1 + 𝛽2exper𝑖 + 𝛽3exper2
𝑖 + 𝛽4exper3

𝑖 + 𝑢𝑖.

## we focus on people with Asian background only for illustration
cps.as = cps |> subset(Asian == 1)
fit = lm(wage ~ experience + I(experience^2) + I(experience^3),

data = cps.as)
beta = fit$coefficients
beta |> round(4)

(Intercept) experience I(experience^2) I(experience^3)
20.4547 1.2013 -0.0447 0.0004

## Scatterplot
plot(wage ~ experience, data = cps.as, ylim = c(0,100))
## plot the cubic function for fitted wages
curve(
beta[1] + beta[2]*x + beta[3]*x^2 + beta[4]*x^3,
from = 0, to = 70, add=TRUE, col='red', lwd=2
)
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The marginal effect depends on the years of experience:

𝜕𝐸[wage𝑖|exper𝑖]
𝜕exper𝑖

= 𝛽2 + 2𝛽3exper𝑖 + 3𝛽4exper2
𝑖 .

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.2013 + 2 ⋅ (−0.0447) ⋅ 10 + 3 ⋅ 0.0004 ⋅ 102 = 0.4273.

Interactions

A linear regression with interaction terms:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3fem𝑖 + 𝛽4marr𝑖 + 𝛽5(marr𝑖 ⋅ fem𝑖) + 𝑢𝑖

lm(wage ~ education + female + married + married:female, data = cps)

Call:
lm(formula = wage ~ education + female + married + married:female,

data = cps)

Coefficients:
(Intercept) education female married female:married

-17.886 2.867 -3.266 7.167 -5.767
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The marginal effect of gender depends on the person’s marital status:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖,marr𝑖]
𝜕fem𝑖

= 𝛽3 + 𝛽5marr𝑖

Interpretation: Given the same education, unmarried women are paid on average 3.27 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖,marr𝑖]
𝜕marr𝑖

= 𝛽4 + 𝛽5fem𝑖

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

Logarithms

When analyzing wage data, we often use logarithmic transformations because they help model
proportional relationships and reduce the skewness of the typically right-skewed distribution
of wages. A common specification is the log-linear model, where we take the logarithm of
wages while keeping education in its original scale:

In the logarithmic specification

log(wage𝑖) = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖

we have
𝜕𝐸[log(wage𝑖)|𝑒𝑑𝑢𝑖]

𝜕edu𝑖
= 𝛽2.

This implies
𝜕𝐸[log(wage𝑖)|edu𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟

absolute
change

= 𝛽2 ⋅ 𝜕edu𝑖⏟
absolute
change

.

That is, 𝛽2 gives the average absolute change in log-wages when education changes by 1.

Another interpretation can be given in terms of relative changes. Consider the following
approximation:

𝐸[wage𝑖|edu𝑖] ≈ exp(𝐸[log(wage𝑖)|edu𝑖]).
The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because 𝐸[log(𝑌 )] < log(𝐸[𝑌 ]),
but this difference is small unless the data is highly skewed.
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The marginal effect of a change in 𝑒𝑑𝑢 on the geometric mean of 𝑤𝑎𝑔𝑒 is
𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])

𝜕edu𝑖
= 𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

outer derivative

⋅𝛽2.

Using the geometric mean approximation from above, we get
𝜕𝐸[wage𝑖|edu𝑖]
𝐸[wage𝑖|edu𝑖]⏟⏟⏟⏟⏟⏟⏟

percentage
change

≈ 𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])
𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])

= 𝛽2 ⋅ 𝜕edu𝑖⏟
absolute
change

.

linear_model = lm(wage ~ education, data = cps.as)
log_model = lm(log(wage) ~ education, data = cps.as)
log_model

Call:
lm(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education

1.3783 0.1113

plot(wage ~ education, data = cps.as, ylim = c(0,80), xlim = c(4,22))
abline(linear_model, col="blue")
coef = coefficients(log_model)
curve(exp(coef[1]+coef[2]*x), add=TRUE, col="red")
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Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-linear and log-linear specifications, we also have the linear-log speci-
fication

𝑌 = 𝛽1 + 𝛽2 log(𝑋) + 𝑢
and the log-log specification

log(𝑌 ) = 𝛽1 + 𝛽2 log(𝑋) + 𝑢.

Linear-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 0.01𝛽2 higher 𝑌 .

Log-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 𝛽2% higher 𝑌 .

4.8 R-codes

metrics-sec04.R
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5 Regression Inference

Recall the linear regression framework. We observe a sample {(𝑋𝑋𝑋𝑖, 𝑌𝑖)}𝑛
𝑖=1 and assume

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0,

where 𝑋𝑋𝑋𝑖 is a 𝑘-dimensional regressor vector (including an intercept), 𝛽𝛽𝛽 is the unknown pa-
rameter vector, and 𝑢𝑖 is the error term. In matrix form we have

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢,

where 𝑋𝑋𝑋 is the 𝑛×𝑘 design matrix (its rows are: 𝑋𝑋𝑋′
𝑖), 𝑌𝑌𝑌 is the 𝑛-vector of dependent variables,

and 𝑢𝑢𝑢 is the 𝑛-vector of errors.
The OLS estimator ̂𝛽𝛽𝛽 is obtained by minimizing the sum of squared residuals:

̂𝛽𝛽𝛽 = argmin
𝑏𝑏𝑏

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2

= (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖

= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 (𝑋𝑋𝑋′𝑌𝑌𝑌 ).

5.1 Strict Exogeneity

The weak exogeneity condition

𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0

ensures that the regressors are uncorrelated with the error at the individual observation level.
However, this condition is not sufficient to guarantee that the OLS estimator is unbiased.
It still allows for 𝑢𝑖 to be correlated with regressors from other observations (𝑋𝑋𝑋𝑗 for 𝑗 ≠ 𝑖),
which can lead to a biased estimation.

To ensure unbiasedness, we require the stronger condition of strict exogeneity:

𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑗] = 0 for each 𝑗 = 1, … , 𝑛,
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or, equivalently in matrix form:
𝐸[𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋] = 000.

Strict exogeneity requires the entire vector of errors 𝑢𝑢𝑢 to be mean independent of the full
regressor matrix 𝑋𝑋𝑋. That is, no systematic relationship exists between any regressors and any
error term across observations.

Note

Under i.i.d. sampling, strict exogeneity typically holds automatically: independence
across observations ensures 𝑢𝑖 is uncorrelated with 𝑋𝑋𝑋𝑗 for 𝑗 ≠ 𝑖.

However, strict exogeneity may fail in dynamic time series settings, e.g.:

𝑌𝑡 = 𝛽1 + 𝛽2𝑌𝑡−1 + 𝑢𝑡, 𝐸[𝑢𝑡|𝑌𝑡−1] = 0. (5.1)
Here, 𝑢𝑡 is uncorrelated with 𝑌𝑡−1, but it is correlated through Equation 5.1 with 𝑌𝑡, which is
the regressor for the dependent variable 𝑌𝑡+1:

𝑌𝑡+1 = 𝛽1 + 𝛽2𝑌𝑡 + 𝑢𝑡+1, 𝐸[𝑢𝑡+1|𝑌𝑡] = 0. (5.2)

Therefore the error of Equation 5.1 is correlated with the regressor of Equation 5.2, violating
strict exogeneity.

5.2 Unbiasedness

To derive the unbiasedness of the OLS estimator, recall the model:

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢.

Plugging this into the OLS formula:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢)
= 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢.

Taking the conditional expectation:

𝐸[ ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋] = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐸[𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋].

Under strict exogeneity, 𝐸[𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋] = 000, so:

𝐸[ ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋] = 𝛽𝛽𝛽.
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Taking the expectation over the sampling distribution of 𝑋𝑋𝑋:

𝐸[ ̂𝛽𝛽𝛽] = 𝐸[𝐸[ ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋]] = 𝛽𝛽𝛽.

Thus, each element of the OLS estimator is unbiased:

𝐸[ ̂𝛽𝑗] = 𝛽𝑗 for 𝑗 = 1, … , 𝑘.

Under strict exogeneity, the OLS estimator ̂𝛽𝛽𝛽 is unbiased:

𝐸[ ̂𝛽𝛽𝛽] = 𝛽𝛽𝛽.

Even when strict exogeneity fails (as in time-dependent settings) asymptotic unbiasedness
may still hold:

lim
𝑛→∞

𝐸[ ̂𝛽𝛽𝛽] = 𝛽𝛽𝛽.

For time series regressions, OLS remains asymptotically unbiased if far distant future regressors
are independent of current errors, and the underlying relationship remains stable over time,
i.e., there are no structural changes in the conditional mean function over time.

5.3 Sampling Variance of OLS

The OLS estimator ̂𝛽𝛽𝛽 provides a point estimate of the unknown population parameter 𝛽𝛽𝛽.
For example, in the regression

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3fem𝑖 + 𝑢𝑖,

we obtain specific coefficient estimates:

cps = read.csv("cps.csv")
fit = lm(wage ~ education + female, data = cps)
fit |> coef()

(Intercept) education female
-14.081788 2.958174 -7.533067
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The estimate for education is ̂𝛽2 = 2.958. However, this point estimate tells us nothing
about how far it might be from the true value 𝛽2. That is, it does not reflect estimation
uncertainty, which arises because ̂𝛽𝛽𝛽 depends on a finite sample that could have turned out
differently.

Larger samples tend to reduce estimation uncertainty, but in practice we only observe one
finite sample. To quantify this uncertainty, we study the sampling variance of the OLS
estimator:

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋),
the conditional variance of ̂𝛽𝛽𝛽 given the regressor matrix 𝑋𝑋𝑋.

General formula for sampling variance of OLS:

Let 𝐷𝐷𝐷 = 𝑉 𝑎𝑟(𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋) be the conditional covariance matrix of the error terms. Then,

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

This follows from
̂𝛽𝛽𝛽 = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢

together with the general rule that for any matrix 𝐴𝐴𝐴,

𝑉 𝑎𝑟(𝐴𝐴𝐴𝑢𝑢𝑢) = 𝐴𝐴𝐴 𝑉 𝑎𝑟(𝑢𝑢𝑢)𝐴𝐴𝐴′.

Depending on the structure of the data and the behavior of the error term, this expression
takes different forms:

Homoskedasticity

Let {(𝑋𝑋𝑋𝑖, 𝑌𝑖)}𝑛
𝑖=1 be an i.i.d. sample and let the error term be homoskedastic, meaning

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2 for all 𝑖.
Homoskedasticity means that the variance of the error does not depend on the value of the
regressor. For instance, in a regression of wage on female, homoskedasticity means that men
and women have the same error variance. Homoskedasticity holds if the error 𝑢𝑖 is independent
of the regressor 𝑋𝑋𝑋𝑖.

The homoskedastic error covariance matrix has the following simple form:

𝐷𝐷𝐷 = 𝜎2𝐼𝐼𝐼𝑛 =
⎛⎜⎜⎜⎜
⎝

𝜎2 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

⎞⎟⎟⎟⎟
⎠

.
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In this case, the sampling variance simplifies to:

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

This is the Gauss-Markov setting, in which OLS is the Best Linear Unbiased Estimator
(BLUE).

Heteroskedasticity

If the sample is i.i.d., but 𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) depends on 𝑋𝑋𝑋𝑖, the errors are heteroskedastic:

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2(𝑋𝑋𝑋𝑖) = 𝜎2
𝑖 .

For instance, in a regression of wage on gender, the wage variability might differ between men
and women.

In this case, 𝐷𝐷𝐷 remains diagonal but no longer proportional to the identity matrix:

𝐷𝐷𝐷 =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

.

The sampling variance becomes:

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 [
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] (𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

Clustered Sampling

For clustered observations we can use the notation (𝑋𝑋𝑋𝑖𝑔, 𝑌𝑖𝑔) for 𝑖 = 1, … , 𝑛𝑔 observations in
cluster 𝑔 = 1, … , 𝐺:

𝑌𝑖𝑔 = 𝑋𝑋𝑋′
𝑖𝑔𝛽𝛽𝛽 + 𝑢𝑖𝑔, 𝑖 = 1, … , 𝑛𝑔, 𝑔 = 1, … , 𝐺.

We assume:

(i) Weak exogeneity within clusters: 𝐸[𝑢𝑖𝑔 ∣ 𝑋𝑋𝑋𝑔] = 0 for all 𝑔 = 1, … , 𝐺.
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(ii) Independence across clusters: (𝑌𝑌𝑌 1𝑔, … , 𝑌𝑛𝑔𝑔,𝑋𝑋𝑋′
1𝑔, … ,𝑋𝑋𝑋′

𝑛𝑔𝑔) are i.i.d. for 𝑔 = 1, … , 𝐺.

This together ensures strict exogenity and unbiasedness of OLS, but allow for arbitrary corre-
lation of errors within each cluster. The covariance matrix 𝐷𝐷𝐷 has a block-diagonal form:

𝐷𝐷𝐷 =
⎛⎜⎜⎜⎜
⎝

𝐷𝐷𝐷1 0 ⋯ 0
0 𝐷𝐷𝐷2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐷𝐷𝐷𝐺

⎞⎟⎟⎟⎟
⎠

,

where each block 𝐷𝐷𝐷𝑔 is an 𝑛𝑔 × 𝑛𝑔 matrix capturing the error covariances within cluster 𝑔:

𝐷𝐷𝐷𝑔 =
⎛⎜⎜⎜⎜⎜
⎝

𝐸[𝑢2
1𝑔|𝑋𝑋𝑋] 𝐸[𝑢1𝑔𝑢2𝑔|𝑋𝑋𝑋] ⋯ 𝐸[𝑢1𝑔𝑢𝑛𝑔𝑔|𝑋𝑋𝑋]

𝐸[𝑢2𝑔𝑢1𝑔|𝑋𝑋𝑋] 𝐸[𝑢2
2𝑔|𝑋𝑋𝑋] ⋯ 𝐸[𝑢2𝑔𝑢𝑛𝑔𝑔|𝑋𝑋𝑋]

⋮ ⋮ ⋱ ⋮
𝐸[𝑢𝑛𝑔𝑔𝑢1𝑔|𝑋𝑋𝑋] 𝐸[𝑢𝑛𝑔𝑔𝑢2𝑔|𝑋𝑋𝑋] ⋯ 𝐸[𝑢2

𝑛𝑔𝑔|𝑋𝑋𝑋]

⎞⎟⎟⎟⎟⎟
⎠

.

The middle part of the sandwich form of the covariance matrix 𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) becomes:

𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 =
𝐺

∑
𝑔=1

𝐸[(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)
′
∣𝑋𝑋𝑋].

Time Series Data

In time series regressions, errors 𝑢𝑡 are often serially correlated. A typical example is an
AR(1) process:

𝑢𝑡 = 𝜙𝑢𝑡−1 + 𝜀𝑡,
where |𝜙| < 1 and 𝜀𝑡 is i.i.d. with mean 0 and variance 𝜎2

𝜀 .

Then the autocovariance structure is:

𝐶𝑜𝑣(𝑢𝑡, 𝑢𝑡−ℎ) = 𝜎2𝜙ℎ, for ℎ ≥ 0,
where

𝜎2 = 𝜎2
𝜀

1 − 𝜙2 .

The resulting covariance matrix 𝐷𝐷𝐷 has a Toeplitz structure:

𝐷𝐷𝐷 = 𝜎2
⎛⎜⎜⎜⎜⎜⎜
⎝

1 𝜙 𝜙2 ⋯ 𝜙𝑛−1

𝜙 1 𝜙 ⋯ 𝜙𝑛−2

𝜙2 𝜙 1 ⋯ 𝜙𝑛−3

⋮ ⋮ ⋮ ⋱ ⋮
𝜙𝑛−1 𝜙𝑛−2 𝜙𝑛−3 ⋯ 1

⎞⎟⎟⎟⎟⎟⎟
⎠

.
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5.4 Gaussian Regression

The Gaussian regression model builds on the linear regression framework by adding a dis-
tributional assumption. It assumes an i.i.d. sample and that the error terms are conditionally
normally distributed:

𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) (5.3)

That is, conditional on the regressors, the error has mean zero (exogeneity), constant variance
(homoskedasticity), and a normal distribution. This assumption implies that the OLS esti-
mator itself is normally distributed, since it is a linear combination of normally distributed
errors:

̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋 ∼ 𝒩(𝛽𝛽𝛽, 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1).

In particular, each standardized coefficient follows a standard normal distribution:

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
∼ 𝒩(0, 1),

with conditional standard deviation

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋) = 𝜎√(𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑗𝑗 .

Classical Standard Errors

The conditional standard deviation of ̂𝛽𝑗 is unknown because the population error variance 𝜎2

is unknown.

A standard error of ̂𝛽𝑗 is an estimator of the conditional standard deviation. To construct
a valid standard error under this setup, we can use the adjusted residual variance to estimate
𝜎2:

𝑠2
𝑢̂ = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

The classical standard error (valid under homoskedasticity) is defined as:

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) = 𝑠𝑢̂√(𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑗𝑗 .

Under the Gaussian assumption Equation 5.3, ̂𝛽𝛽𝛽 and 𝑠2
𝑢̂ are independent and 𝑠2

𝑢̂ has the
following property:

(𝑛 − 𝑘)𝑠2
𝑢̂

𝜎2 ∼ 𝜒2
𝑛−𝑘.
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This allows us to derive the exact distribution of the standardized OLS coefficient when we
replace the population standard deviation with its sample estimate (the standard error):

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
=

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
⋅ 𝜎

𝑠𝑢̂
∼ 𝒩(0, 1)

√𝜒2
𝑛−𝑘/(𝑛 − 𝑘)

= 𝑡𝑛−𝑘

This means that the OLS coefficient standardized with the homoskedastic standard error in-
stead of the standard deviation follows a 𝑡-distribution with 𝑛 − 𝑘 degrees of freedom.

For a refresher on the normal and 𝑡-distribution, see
Probability Tutorial Part 4

To estimate the full sampling covariance matrix 𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋), the classical covariance matrix
estimator is:

𝑉𝑉𝑉 ℎ𝑜𝑚 = 𝑠2
𝑢̂(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

## classical homoskedastic covariance matrix estimator:
vcov(fit)

(Intercept) education female
(Intercept) 0.18825476 -0.0127486354 -0.0089269796
education -0.01274864 0.0009225111 -0.0002278021
female -0.00892698 -0.0002278021 0.0284200217

Classical standard errors 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) are the square roots of the diagonal entries:

## classical standard errors:
sqrt(diag(vcov(fit)))

(Intercept) education female
0.43388334 0.03037287 0.16858239

They are also displayed in parentheses in a typical regression summary table:

library(modelsummary)
modelsummary(fit, gof_map = "none")

The argument gof_map = "none" omits all goodness of fit statistics like R-squared and
RMSE.
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(1)
(Intercept) −14.082

(0.434)
education 2.958

(0.030)
female −7.533

(0.169)

Confidence Intervals

A confidence interval is a range of values that is likely to contain the true population parameter
with a specified confidence level or coverage probability, often expressed as a percentage
(e.g., 95%).

A (1 − 𝛼) confidence interval for 𝛽𝑗 is an interval 𝐼1−𝛼 such that

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼.
Under the Gaussian assumption Equation 5.3, this property is satisfied for the classical ho-
moskedastic confidence interval:

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑡𝑛−𝑘,1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡𝑛−𝑘,1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)],

where 𝑡𝑛−𝑘,1−𝛼/2 is the 1 − 𝛼/2-quantile from the t-distribution with 𝑛 − 𝑘 degrees of freedom.
Common coverage probabilities are 0.90, 0.95, 0.99, and 0.999.

Table 5.1: Student’s 𝑡-distribution quantiles

df 0.95 0.975 0.995 0.9995
1 6.31 12.71 63.66 636.6
2 2.92 4.30 9.92 31.6
3 2.35 3.18 5.84 12.9
5 2.02 2.57 4.03 6.87
10 1.81 2.23 3.17 4.95
20 1.72 2.09 2.85 3.85
50 1.68 2.01 2.68 3.50
100 1.66 1.98 2.63 3.39
→ ∞ 1.64 1.96 2.58 3.29
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(1)
(Intercept) −14.082

[−14.932, −13.231]
education 2.958

[2.899, 3.018]
female −7.533

[−7.863, −7.203]

The last row (indicated by → ∞) shows the quantiles of the standard normal distribution
𝒩(0, 1).
You can display 95% confidence intervals in the modelsummary output using the conf.int
argument:

modelsummary(fit, gof_map = "none", statistic = "conf.int")

Note: the confidence interval is random, while the parameter 𝛽𝑗 is fixed but unknown.

A correct interpretation of a 95% confidence interval is:
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• If we were to repeatedly draw samples and construct a 95% confidence interval from each
sample, about 95% of these intervals would contain the true parameter.

Common misinterpretations to avoid:

• � “There is a 95% probability that the true value lies in this interval.”
• � “We are 95% confident this interval contains the true parameter.”

These mistakes incorrectly treat the parameter as random and the interval as fixed. In reality,
it’s the other way around.

A 95% confidence interval should be understood as a coverage probability: Before observing
the data, there is a 95% probability that the random interval will cover the true parameter.

A helpful visualization:

https://rpsychologist.com/d3/ci/

Limitations of the Gaussian Approach

The Gaussian regression framework assumes:

• Weak exogeneity: 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0
• I.i.d. sample: {(𝑌𝑖,𝑋𝑋𝑋𝑖)}𝑛

𝑖=1
• Homoskedastic, normally distributed errors: 𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2)
• 𝑋𝑋𝑋′𝑋𝑋𝑋 is invertible (i.e. 𝑋𝑋𝑋 has full rank)

While mathematically convenient, these assumptions are often violated in practice. In partic-
ular, the normality assumption implies homoskedasticity and that the conditional distribution
of 𝑌𝑖 given 𝑋𝑋𝑋𝑖 is normal, which is an unrealistic scenario in many economic applications.

Historically, homoskedasticity has been treated as the “default” assumption and heteroskedas-
ticity as a special case. But in empirical work, heteroskedasticity is the norm.

A plot of the absolute value of the residuals against the fitted values shows that individuals
with predicted wages around 10 USD exhibit residuals with lower variance compared to those
with higher predicted wage levels. Hence, the homoskedasticity assumption is implausible:

# Plot of absolute residuals against fitted values
plot(abs(fit$residuals) ~ fit$fitted.values)
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The Q-Q-plot is a graphical tool to help us assess if the errors are conditionally normally
distributed.

Let 𝑢̂(𝑖) be the sorted residuals (i.e. 𝑢̂(1) ≤ … ≤ 𝑢̂(𝑛)). The Q-Q-plot plots the sorted residuals
𝑢̂(𝑖) against the ((𝑖 − 0.5)/𝑛)-quantiles of the standard normal distribution.

If the residuals are lined well on the straight dashed line, there is indication that the distribution
of the residuals is close to a normal distribution.

set.seed(123)
par(mfrow = c(1,2))
## auxiliary regression with simulated normal errors:
fit.aux = lm(rnorm(500) ~ 1)
## Q-Q-plot of the residuals of the auxiliary regression:
qqnorm(residuals(fit.aux))
qqline(residuals(fit.aux))
## Q-Q-plot of the residuals of the wage regression:
qqnorm(residuals(fit))
qqline(residuals(fit))
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In the left plot you see the Q-Q-plot for an example with simulated normally distributed errors,
where the Gaussian regression assumption is satisfied.

The right plot indicates that, in our regression of wage on education and female, the normality
assumption is implausible.

5.5 Heteroskedastic Linear Model

The classical approach to regression relies on strong distributional assumptions: normality and
homoskedasticity of the errors. While this enables exact inference in small samples, it is rarely
justified in empirical applications.

The modern econometric approach avoids such assumptions and instead relies on asymp-
totic approximations under weaker conditions (i.e., finite kurtosis instead of normality and
homoskedasticity).

Heteroskedastic Linear Model

We assume that the sample {(𝑌𝑖,𝑋𝑋𝑋′
𝑖)}𝑛

𝑖=1 satisfies the linear regression equation

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛,

under the following conditions:

• (A1) 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0 (weak exogeneity)

• (A2) {(𝑌𝑖,𝑋𝑋𝑋′
𝑖)}𝑛

𝑖=1 is an i.i.d. sample (random sampling)
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• (A3) 𝑘𝑢𝑟(𝑌𝑖) < ∞ and 𝑘𝑢𝑟(𝑋𝑖𝑗) < ∞ for all 𝑗 = 1, … , 𝑘
(bounded kurtosis: large outliers are unlikely)

• (A4) ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 is invertible (OLS is well defined)

Under heteroskedasticity, the error variance may depend on the regressor:

𝜎2
𝑖 = Var(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖),

and the conditional standard deviation of ̂𝛽𝑗 is

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋) =
√√
⎷

[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]
𝑗𝑗

.

Unlike in the Gaussian case, the standardized OLS coefficient does not follow a standard
normal distribution in finite samples:

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
≁ 𝒩(0, 1).

However, for large samples, the central limit theorem guarantees that the OLS estimator
is asymptotically normal:

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
𝑑→ 𝒩(0, 1) as 𝑛 → ∞.

This result holds because the OLS estimator can be expressed as:

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) = √𝑛(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖

= ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 1√𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖,

where:

• By the law of large numbers:

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] = 𝑄𝑄𝑄,

• And by the central limit theorem:

1√𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖
𝑑→ 𝒩(000,ΩΩΩ), where ΩΩΩ = 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖].
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For more details on stochastic convergence and the central limit theorem, see Proba-
bility Tutorial Part 4

Asymptotic Distribution of OLS Estimator

Under the heteroskedastic linear model:
√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000, 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1),

where 𝑄𝑄𝑄 = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] and ΩΩΩ = 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖].

This asymptotic distribution forms the basis for heteroskedasticity-robust inference.

5.6 Heteroskedasticity-Robust Standard Errors

The asymptotic distribution of the OLS estimator under heteroskedasticity depends on two
population matrices:

• 𝑄𝑄𝑄 = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖], and

• ΩΩΩ = 𝐸[𝑢2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]

While 𝑄𝑄𝑄 can be consistently estimated by its sample counterpart,

𝑄𝑄𝑄 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖,

estimating ΩΩΩ is more challenging because the error terms 𝑢𝑖 are unobserved.

To overcome this, we replace the unobserved 𝑢𝑖 with the OLS residuals:

𝑢̂𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽.

This yields a consistent estimator of ΩΩΩ:

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖.

Substituting into the asymptotic variance formula, we obtain the heteroskedasticity-
consistent covariance matrix estimator, also known as the White estimator (White,
1980):
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White (HC0) Estimator

𝑉𝑉𝑉 ℎ𝑐0 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 (
𝑛

∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

This estimator remains consistent for 𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) even if the errors are heteroskedastic. How-
ever, it can be biased downward in small samples.

HC1 Correction

To reduce small-sample bias, MacKinnon and White (1985) proposed the HC1 correction,
which rescales the estimator using a degrees-of-freedom adjustment:

𝑉𝑉𝑉 ℎ𝑐1 = 𝑛
𝑛 − 𝑘 ⋅ (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 (

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) (𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

The HC1 standard error for the 𝑗-th coefficient is then:

𝑠𝑒ℎ𝑐1( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐1]𝑗𝑗.

These standard errors are widely used in applied work because they are valid under general
forms of heteroskedasticity and easy to compute. Most statistical software (including R and
Stata) uses HC1 by default when robust inference is requested.

Robust Confidence Intervals

Using heteroskedasticity-robust standard errors, we can construct confidence intervals that
remain valid under heteroskedasticity.

For large samples, a (1 − 𝛼) confidence interval for 𝛽𝑗 is:

𝐼1−𝛼 = [ ̂𝛽𝑗 ± 𝑧1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑐1( ̂𝛽𝑗)] ,

where 𝑧1−𝛼/2 is the standard normal critical value (e.g., 𝑧0.975 = 1.96 for a 95% interval).
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For moderate sample sizes, using a 𝑡-distribution with 𝑛 − 𝑘 degrees of freedom gives better
finite-sample performance:

𝐼1−𝛼 = [ ̂𝛽𝑗 ± 𝑡𝑛−𝑘,1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑐1( ̂𝛽𝑗)] .

These robust intervals satisfy the asymptotic coverage property:

lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼.

Why software uses 𝑡-quantiles:

Under heteroskedasticity, there’s no theoretical justification for using 𝑡-quantiles instead
of normal ones. However, most software use 𝑡𝑛−𝑘 by default to match the homoskedastic
case and improve finite-sample performance. For large samples, this makes little differ-
ence, as 𝑡-quantiles converge to standard normal quantiles as degrees of freedom grow
large.

The fixest package provides the feols function to estimate regression models with
heteroskedasticity-robust standard errors. The vcov argument allows you to specify the type
of covariance matrix estimator to use.

library(fixest)
fit.hom = feols(wage ~ education + female, data = cps, vcov = "iid")
fit.het = feols(wage ~ education + female, data = cps, vcov = "hc1")

mymodels = list(
"Homoskedastic" = fit.hom,
"Heteroskedastic" = fit.het

)
## Standard error comparison:
modelsummary(mymodels)

## Confidence interval comparison:
modelsummary(mymodels, statistic = "conf.int")

AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are statistical
measures that evaluate model quality by balancing goodness-of-fit against complexity. A
smaller value indicates a better model. In this example we see the same values for both
models because the regression equations are the same and only the standard errors differ.
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Homoskedastic Heteroskedastic
(Intercept) −14.082 −14.082

(0.434) (0.500)
education 2.958 2.958

(0.030) (0.040)
female −7.533 −7.533

(0.169) (0.162)
Num.Obs. 50 742 50 742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441 515.9 441 515.9
BIC 441 542.4 441 542.4
RMSE 18.76 18.76
Std.Errors IID Heteroskedasticity-robust

Homoskedastic Heteroskedastic
(Intercept) −14.082 −14.082

[−14.932, −13.231] [−15.062, −13.102]
education 2.958 2.958

[2.899, 3.018] [2.880, 3.037]
female −7.533 −7.533

[−7.863, −7.203] [−7.850, −7.216]
Num.Obs. 50 742 50 742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441 515.9 441 515.9
BIC 441 542.4 441 542.4
RMSE 18.76 18.76
Std.Errors IID Heteroskedasticity-robust

97



5.7 R-codes

metrics-sec05.R
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6 Robust Testing

In applied regression analysis, we often want to assess whether a regressor has a statistically
significant relationship with the outcome variable (conditional on other regressors).

6.1 t-Test

The most common hypothesis test evaluates whether a regression coefficient equals zero:

𝐻0 ∶ 𝛽𝑗 = 0 vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0.

This corresponds to testing whether the marginal effect of the regressor 𝑋𝑖𝑗 on the outcome
𝑌𝑖 is zero, holding other regressors constant.

We use the t-statistic:

𝑇𝑗 =
̂𝛽𝑗

𝑠𝑒( ̂𝛽𝑗)
,

where 𝑠𝑒( ̂𝛽𝑗) is a standard error.

You may use the classical standard error if you have strong evidence that the errors are
homoskedastic. However, in most economic applications, heteroskedasticity-robust standard
errors are more reliable.

Under the null, 𝑇𝑗 follows approximately a 𝑡𝑛−𝑘 distribution. We reject 𝐻0 at the significance
level 𝛼 if:

|𝑇𝑗| > 𝑡𝑛−𝑘,1−𝛼/2.

This decision rule is equivalent to checking whether the confidence interval for 𝛽𝑗 includes 0:

• Reject 𝐻0 if 0 lies outside the 1 − 𝛼 confidence interval
• Fail to reject (accept) 𝐻0 if 0 lies inside the 1 − 𝛼 confidence interval
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6.2 p-Value

The p-value is a criterion to reach a hypothesis test decision conveniently:

reject 𝐻0 if p-value < 𝛼
do not reject 𝐻0 if p-value ≥ 𝛼

Formally, the p-value represents the probability of observing a test statistic as extreme or more
extreme than the one we computed, assuming 𝐻0 is true. For the t-test, the p-value is:

𝑝-value = 𝑃(|𝑇 | > |𝑇𝑗| ∣ 𝐻0 is true)
Here, 𝑇 is a random variable following the null distribution 𝑍 ∼ 𝑡𝑛−𝑘, and 𝑇𝑗 is the observed
value of the test statistic.

Another way of representing the p-values of a t-test is:

𝑝-value = 2(1 − 𝐹𝑡𝑛−𝑘
(|𝑇𝑗|)),

where 𝐹𝑡𝑛−𝑘
is the cumulative distribution function (CDF) of the 𝑡𝑛−𝑘-distribution.

A common misinterpretation of p-values is treating them as the probability that the null
hypothesis is being true. This is incorrect. The p-value is not a statement about the probability
of the null hypothesis itself.
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The correct interpretation is that the p-value represents the probability of observing a test
statistic at least as extreme as the one calculated from our sample, assuming that the null
hypothesis is true.

In other words, a p-value of 0.04 means:

• � NOT “There’s a 4% chance that the null hypothesis is true”
• � INSTEAD “If the null hypothesis were true, there would be a 4% chance of observing

a test statistic this extreme or more extreme”

Small p-values indicate that the observed data would be unlikely under the null hypothesis,
which leads us to reject the null in favor of the alternative. However, they do not tell us
the probability that our alternative hypothesis is correct, nor do they directly measure the
magnitude or significance of the marginal effect.

Relation to Confidence Intervals:

Zero lies outside the (1−𝛼) confidence interval for 𝛽𝑗 if and only if the p-value for testing
𝐻0 ∶ 𝛽𝑗 = 0 is less than 𝛼.

6.3 Significance Stars

Regression tables often use asterisks to indicate levels of statistical significance. Stars summa-
rize statistical significance by comparing the t-statistic to critical values (or equivalently, the
p-value or whether 0 is covered by the confidence interval)

The convention within R is:

Stars p-value t-statistic Confidence interval
*** 𝑝 < 0.001 |𝑇𝑗| > 𝑡𝑛−𝑘,0.995 0 outside 𝐼0.999
** 0.001 ≤ 𝑝 < 0.01 𝑡𝑛−𝑘,0.995 ≥ |𝑇𝑗| >

𝑡𝑛−𝑘,0.975

0 outside 𝐼0.99, but inside 𝐼0.999

* 0.01 ≤ 𝑝 < 0.05 𝑡𝑛−𝑘,0.975 ≥ |𝑇𝑗| > 𝑡𝑛−𝑘,0.95 0 outside 𝐼0.95, but inside 𝐼0.99
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(1) (2)
(Intercept) −14.082*** −14.082***

(0.434) (0.500)
education 2.958*** 2.958***

(0.030) (0.040)
female −7.533*** −7.533***

(0.169) (0.162)
Num.Obs. 50 742 50 742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441 515.9 441 515.9
BIC 441 542.4 441 542.4
RMSE 18.76 18.76
Std.Errors IID Heteroskedasticity-robust

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Significance Stars Convention

Note that most economists use the following significance levels: *** for 1%, ** for 5%,
and * for 10%. In this lecture, we follow the convention of R, which uses the significance
levels *** for 0.1%, ** for 1%, and * for 5%.

Regression Tables

Let’s revisit the regression of wage on education and female.

library(fixest)
library(modelsummary)
cps = read.csv("cps.csv")
fit.hom = feols(wage ~ education + female, data = cps, vcov = "iid")
fit.het = feols(wage ~ education + female, data = cps, vcov = "hc1")
mymodels = list(fit.hom, fit.het)
modelsummary(mymodels, stars = TRUE)
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To see the exact t-statistics and p-values, you can use the summary() function:

summary(fit.hom)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: IID

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.08179 0.433883 -32.4552 < 2.2e-16 ***
education 2.95817 0.030373 97.3953 < 2.2e-16 ***
female -7.53307 0.168582 -44.6848 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 18.8 Adj. R2: 0.179696

summary(fit.het)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.08179 0.500078 -28.1592 < 2.2e-16 ***
education 2.95817 0.040110 73.7512 < 2.2e-16 ***
female -7.53307 0.161644 -46.6027 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 18.8 Adj. R2: 0.179696

All p-values are super small: 2.2e-16 means 2.2 ⋅ 10−16 (15 zeros after the decimal point,
followed by 22).

Let’s also revisit the CASchools dataset and examine four regression models on test scores.

library(AER)
data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read + CASchools$math)/2

fitA = feols(score ~ STR, data = CASchools)
fitB = feols(score ~ STR + english, data = CASchools)
fitC = feols(score ~ STR + english + lunch, data = CASchools)
fitD = feols(score ~ STR + english + lunch + expenditure, data = CASchools)
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(1) (2) (3) (4)
(Intercept) 698.933*** 686.032*** 700.150*** 665.988***

(9.467) (7.411) (4.686) (9.460)
STR −2.280*** −1.101** −0.998*** −0.235

(0.480) (0.380) (0.239) (0.298)
english −0.650*** −0.122*** −0.128***

(0.039) (0.032) (0.032)
lunch −0.547*** −0.546***

(0.022) (0.021)
expenditure 0.004***

(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors IID IID IID IID

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Classical (Homoskedastic) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary(mymodels, stars = TRUE, vcov = "iid")

Robust (HC1) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary(mymodels, stars = TRUE, vcov = "HC1")
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(1) (2) (3) (4)
(Intercept) 698.933*** 686.032*** 700.150*** 665.988***

(10.364) (8.728) (5.568) (10.377)
STR −2.280*** −1.101* −0.998*** −0.235

(0.519) (0.433) (0.270) (0.325)
english −0.650*** −0.122*** −0.128***

(0.031) (0.033) (0.032)
lunch −0.547*** −0.546***

(0.024) (0.023)
expenditure 0.004***

(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors HC1 HC1 HC1 HC1

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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Interpretation of STR coefficient:

• Models A–C: The coefficient is negative and statistically significant. However, when
using robust standard errors, the coefficient in model B becomes only weakly significant.

• Model D: The coefficient remains negative but becomes insignificant when controlling
for expenditure.

As discussed earlier, expenditure is a bad control in this context and should not be used to
estimate a ceteris paribus effect of class size on test scores.

6.4 Testing for Heteroskedasticity: Breusch-Pagan Test

Classical standard errors should only be used if you have statistical evidence that the errors
are homoskedastic. A statistical test for this is the Breusch-Pagan Test.

Under homoskedasticity, the variance of the error term is constant and does not depend on
the values of the regressors:

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2 (constant).

To test this assumption, we perform an auxiliary regression of the squared residuals on the
original regressors:

𝑢̂2
𝑖 = 𝑋𝑋𝑋′

𝑖𝛾𝛾𝛾 + 𝑣𝑖, 𝑖 = 1, … , 𝑛,
where:

• 𝑢̂𝑖 are the OLS residuals from the original model,
• 𝛾𝛾𝛾 are auxiliary coefficients,
• 𝑣𝑖 is the error term in the auxiliary regression.

If homoskedasticity holds, the regressors should not explain any variation in 𝑢̂2
𝑖 , which means

the auxiliary regression should have low explanatory power.

Let 𝑅2
aux be the R-squared from this auxiliary regression. Then, the Breusch–Pagan (BP)

test statistic is:
𝐵𝑃 = 𝑛 ⋅ 𝑅2

aux

Under the null hypothesis of homoskedasticity,

𝐻0 ∶ 𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2,
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the test statistic follows an asymptotic chi-squared distribution with 𝑘−1 degrees of freedom:

𝐵𝑃 𝑑→ 𝜒2
𝑘−1

We reject 𝐻0 at significance level 𝛼 if:

𝐵𝑃 > 𝜒2
1−𝛼, 𝑘−1.

This basic variant of the BP test is Koenker’s version of the test. Other variants include further
nonlinear transformations of the regressors.

In R, the test is implemented via the bptest() function from the AER package. Unfortunately,
the bptest() function does not work directly with feols objects, so we need to estimate the
model first with lm():

fit = lm(wage ~ education + female, data = cps)
bptest(fit)

studentized Breusch-Pagan test

data: fit
BP = 1070.3, df = 2, p-value < 2.2e-16

In the wage regression the BP test clearly rejects 𝐻0, which is strong statistical evidence that
the errors are heteroskedastic.

Let’s apply the test to the CASchools model:

lm(score ~ STR + english, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: lm(score ~ STR + english, data = CASchools)
BP = 29.501, df = 2, p-value = 3.926e-07

lm(score ~ STR + english + lunch, data = CASchools) |> bptest()
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studentized Breusch-Pagan test

data: lm(score ~ STR + english + lunch, data = CASchools)
BP = 9.9375, df = 3, p-value = 0.0191

lm(score ~ STR + english + lunch + expenditure, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: lm(score ~ STR + english + lunch + expenditure, data = CASchools)
BP = 5.9649, df = 4, p-value = 0.2018

In the regression of score on STR and english there is strong statistical evidence that errors
are heteroskedastic, whereas when adding lunch and expenditure there is no evidence of
heteroskedasticity. See the difference in the absolute residuals against fitted values plot:

par(mfrow = c(1,2))
plot(abs(fitB$residuals) ~ fitB$fitted.values)
plot(abs(fitD$residuals) ~ fitD$fitted.values)
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The heteroskedasticity pattern in model (2) likely occurred because of a nonlinear dependence
of the omitted variables lunch and expenditure with the included regressors STR and english.
The inclusion of these variables in model (4) eliminated the heteroskedasticity (apparent het-
eroskedasticity). Therefore, heteroskedasticity is sometimes a sign of model misspecification.
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6.5 Testing for Normality: Jarque–Bera Test

A general property of a normally distributed variable is that it has zero skewness and kurtosis
of three. In the Gaussian regression model, this implies:

𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) ⇒ 𝐸[𝑢3
𝑖 ] = 0, 𝐸[𝑢4

𝑖 ] = 3𝜎4.

The sample skewness and sample kurtosis of the OLS residuals are:

ŝke( ̂𝑢𝑢𝑢) = 1
𝑛𝜎̂3

𝑢̂

𝑛
∑
𝑖=1

𝑢̂3
𝑖 , k̂ur( ̂𝑢𝑢𝑢) = 1

𝑛𝜎̂4
𝑢̂

𝑛
∑
𝑖=1

𝑢̂4
𝑖

A joint test for normality — assessing both skewness and kurtosis — is the Jarque–Bera
(JB) test, with statistic:

𝐽𝐵 = 𝑛 (1
6 ŝke( ̂𝑢𝑢𝑢)2 + 1

24(k̂ur( ̂𝑢𝑢𝑢) − 3)2)

Under the null hypothesis of normal errors, this test statistic is asymptotically chi-squared
distributed:

𝐽𝐵 𝑑→ 𝜒2
2

We reject 𝐻0 at level 𝛼 if:
𝐽𝐵 > 𝜒2

1−𝛼, 2.

In R, we can apply the test using the moments package:

library(moments)
jarque.test(fitD$residuals)

Jarque-Bera Normality Test

data: fitD$residuals
JB = 8.9614, p-value = 0.01133
alternative hypothesis: greater
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Although the Breusch–Pagan test does not reject homoskedasticity for fitD (so classical stan-
dard errors are valid asymptotically), the JB rejects the null hypothesis of normal errors at
the 5% level and provides statistical evidence that the errors are not normally distributed.

This means that exact inference based on t-distributions is not valid in finite samples, and
confidence intervals or t-test results give only large sample approximations.

In econometrics, asymptotic large sample approximations have become the convention because
exact finite sample inference is rarely feasible.

6.6 Joint Hypothesis Testing

So far, we’ve tested whether a single coefficient is zero. But often we want to test multiple
restrictions simultaneously, such as whether a group of variables has a joint effect.

The joint exclusion hypothesis formulates the null hypothesis that a set of coefficients or
linear combinations of coefficients are equal to zero:

𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 000

where:

• 𝑅𝑅𝑅 is a 𝑞 × 𝑘 restriction matrix,
• 000 is the 𝑞 × 1 vector of zeros,
• 𝑞 is the number of restrictions.

Consider for example the score on STR regression with interaction effects:

score𝑖 = 𝛽1 + 𝛽2STR𝑖 + 𝛽3HiEL𝑖 + 𝛽4STR𝑖 ⋅ HiEL𝑖 + 𝑢𝑖.

## Create dummy variable for high proportion of English learners
CASchools$HiEL = (CASchools$english >= 10) |> as.numeric()
fitE = feols(score ~ STR + HiEL + STR:HiEL, data = CASchools, vcov = "hc1")
fitE |> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 682.245837 11.867815 57.487065 < 2.2e-16 ***
STR -0.968460 0.589102 -1.643961 0.10094
HiEL 5.639135 19.514560 0.288971 0.77275
STR:HiEL -1.276613 0.966920 -1.320289 0.18746
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 15.8 Adj. R2: 0.305368

The model output reveals that none of the individual t-tests reject the null hypothesis that
the individual coefficients are zero.

However, these results are misleading because the true marginal effects are a mixture of these
coefficients:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕STR𝑖

= 𝛽2 + 𝛽4 ⋅ HiEL𝑖.

Therefore, to test if STR has an effect on score, we need to test the joint hypothesis:

𝐻0 ∶ 𝛽2 = 0 and 𝛽4 = 0.

In terms of the multiple restriction notation 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 000, we have

𝑅𝑅𝑅 = (0 1 0 0
0 0 0 1) .

Similarly, the marginal effects of HiEL is:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕HiEL𝑖

= 𝛽3 + 𝛽4 ⋅ STR𝑖.

We test the joint hypothesis that 𝛽3 = 0 and 𝛽4 = 0:

𝑅𝑅𝑅 = (0 0 1 0
0 0 0 1) .

Wald Test

The Wald test is based on the Wald distance:

𝑑𝑑𝑑 = 𝑅𝑅𝑅 ̂𝛽𝛽𝛽,

which measures how far the estimated coefficients deviate from the hypothesized restrictions.

The covariance matrix of the Wald distance is: 𝑉 𝑎𝑟(𝑑𝑑𝑑|𝑋𝑋𝑋) = 𝑅𝑅𝑅𝑉 𝑎𝑟( ̂𝛽𝛽𝛽|𝑋𝑋𝑋)𝑅𝑅𝑅′, which can be
estimated as:

𝑉 𝑎𝑟(𝑑𝑑𝑑 ∣ 𝑋𝑋𝑋) = 𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′.
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The Wald statistic is the squared, variance-standardized distance:

𝑊 = 𝑑𝑑𝑑′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1𝑑𝑑𝑑,

where 𝑉𝑉𝑉 is a consistent estimator of the covariance matrix of ̂𝛽𝛽𝛽 (e.g., HC1 robust: 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑐1).

Under the null hypothesis, and assuming (A1)–(A4), the Wald statistic has an asymptotic
chi-squared distribution:

𝑊 𝑑→ 𝜒2
𝑞,

where 𝑞 is the number of restrictions.

The null is rejected if 𝑊 > 𝜒2
1−𝛼,𝑞.

F-test

The Wald test is an asymptotic size-𝛼-test under (A1)–(A4). Even if normality and ho-
moskedasticity hold true as well, the Wald test is still only asymptotically valid, i.e.:

lim
𝑛→∞

𝑃(Wald test rejects 𝐻0|𝐻0 true) = 𝛼.

The F-test is the small sample correction of the Wald test. It is based on the same distance
as the Wald test, but it is scaled by the number of restrictions 𝑞:

𝐹 = 𝑊
𝑞 = 1

𝑞 (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).

Under the restrictive assumption that the Gaussian regression model holds, and if 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚
is used, it can be shown that

𝐹 ∼ 𝐹𝑞;𝑛−𝑘

for any finite sample size 𝑛. Here, 𝐹𝑞;𝑛−𝑘 is the F-distribution with 𝑞 degrees of freedom in
the numerator and 𝑛 − 𝑘 degrees of freedom in the denominator.

The test decision for the F-test:

do not reject 𝐻0 if 𝐹 ≤ 𝐹(1−𝛼,𝑞,𝑛−𝑘),
reject 𝐻0 if 𝐹 > 𝐹(1−𝛼,𝑞,𝑛−𝑘),

where 𝐹(𝑝,𝑚1,𝑚2) is the 𝑝-quantile of the F distribution with 𝑚1 degrees of freedom in the
numerator and 𝑚2 degrees of freedom in the denominator.
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F- and Chi-squared distribution

Similar to how the t-distribution 𝑡𝑛−𝑘 approaches the standard normal as sample size
increases, we have 𝑞 ⋅ 𝐹𝑞;𝑛−𝑘 → 𝜒2

𝑞 as 𝑛 → ∞. Therefore, the F-test and Wald test
become asymptotically equivalent and lead to identical statistical conclusions in large
samples. For single constraint (q=1) hypotheses of the form 𝐻0 ∶ 𝛽𝑗 = 0, the F-test is
equivalent to a two-sided t-test.
The F-test can be viewed as a finite-sample correction of the Wald test. It tends to be
more conservative than the Wald test in small samples, meaning that rejection by the
F-test generally implies rejection by the Wald test, but not necessarily vice versa. Due
to this more conservative nature, which helps control false rejections (Type I errors) in
small samples, the F-test is often preferred in practice.

F-tests in R

The function wald() from the fixest package performs an F-test:

wald(fitE, keep = "STR")

Wald test, H0: joint nullity of STR and STR:HiEL
stat = 5.6381, p-value = 0.003837, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

wald(fitE, keep = "HiEL")

Wald test, H0: joint nullity of HiEL and STR:HiEL
stat = 89.9, p-value < 2.2e-16, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

The hypotheses that STR and HiEL have no effect on score can be clearly rejected.

Another research question is whether the effect of STR on score is zero only for the subgroup
of schools with a high proportion of English learners (HiEL = 1). In this case, the marginal
effect is:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖,HiEL𝑖 = 1]
𝜕STR𝑖

= 𝛽2 + 𝛽4 ⋅ 1,

and the null hypothesis is:
𝐻0 ∶ 𝛽2 + 𝛽4 = 0.
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The corresponding restriction matrix is:

𝑅𝑅𝑅 = (0 1 0 1) ,

where the number of restrictions is 𝑞 = 1.
The function linearHypothesis() from the AER package is more flexible for these cases:

## Define hypothesis matrix:
R = matrix(c(0,1,0,1), ncol = 4)
linearHypothesis(fitE, hypothesis.matrix = R, test = "F", vcov. = vcovHC(fitE, type = "HC1"))

Linear hypothesis test:
STR + STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + STR:HiEL

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 417
2 416 1 8.5736 0.003598 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Similarly, this hypothesis can be rejected at the 0.01 level.

6.7 Jackknife Methods

Projection Matrix

Recall the vector of fitted values 𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽. Inserting the model equation gives:

𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′⏟⏟⏟⏟⏟⏟⏟
=𝑃𝑃𝑃

𝑌𝑌𝑌 = 𝑃𝑃𝑃𝑌𝑌𝑌 .

The projection matrix 𝑃𝑃𝑃 is also known as the influence matrix or hat matrix and maps
observed values to fitted values.
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Leverage Values

The diagonal entries of 𝑃𝑃𝑃 , given by

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖,

are called leverage values or hat values and measure how far away the regressor values of
the 𝑖-th observation 𝑋𝑖 are from those of the other observations.

Properties of leverage values:

0 ≤ ℎ𝑖𝑖 ≤ 1,
𝑛

∑
𝑖=1

ℎ𝑖𝑖 = 𝑘.

Leverage values ℎ𝑖𝑖 indicate how much influence an observation 𝑋𝑋𝑋𝑖 has on the regression fit,
e.g., the last observation in the following artificial dataset:

X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)
plot(X,Y, main="OLS regression line with and without last observation")
abline(lm(Y~X), col="blue")
abline(lm(Y[1:7]~X[1:7]), col="red")
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hatvalues(lm(Y~X))

1 2 3 4 5 6 7 8
0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.9869646
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A low leverage implies the presence of many regressor observations similar to 𝑋𝑋𝑋𝑖 in the sample,
while a high leverage indicates a lack of similar observations near 𝑋𝑋𝑋𝑖.

An observation with a high leverage ℎ𝑖𝑖 but a response value 𝑌𝑖 that is close to the true regres-
sion line 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 (indicating a small error 𝑢𝑖) is considered a good leverage point. Despite being
unusual in the regressor space, this point improves estimation precision because it provides
valuable information about the regression relationship in regions where data is sparse.

Conversely, a bad leverage point occurs when both ℎ𝑖𝑖 and the error 𝑢𝑖 are large, indicating
both unusual regressor and response values. This can misleadingly impact the regression fit.

The actual error term is unknown, but standardized residuals can be used to differentiate
between good and bad leverage points.

Standardized Residuals

Many regression diagnostic tools rely on the residuals of the OLS estimation 𝑢̂𝑖 because they
provide insight into the properties of the unknown error terms 𝑢𝑖.

Under the homoskedastic linear regression model (A1)–(A5), the errors are independent and
have the property

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋) = 𝜎2.
Since 𝑃𝑃𝑃𝑋𝑋𝑋 = 𝑋𝑋𝑋 and, therefore,

̂𝑢𝑢𝑢 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢) = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑢𝑢𝑢,
the residuals have a different property:

𝑉 𝑎𝑟( ̂𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋) = 𝜎2(𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃).
The 𝑖-th residual satisfies

𝑉 𝑎𝑟(𝑢̂𝑖 ∣ 𝑋𝑋𝑋) = 𝜎2(1 − ℎ𝑖𝑖),
where ℎ𝑖𝑖 is the 𝑖-th leverage value.

Under the assumption of homoskedasticity, the variance of 𝑢̂𝑖 depends on 𝑋𝑋𝑋, while the variance
of 𝑢𝑖 does not. Dividing by √1 − ℎ𝑖𝑖 removes the dependency:

𝑉 𝑎𝑟( 𝑢̂𝑖
√1 − ℎ𝑖𝑖

∣ 𝑋𝑋𝑋) = 𝜎2

The standardized residuals are defined as follows:

𝑟𝑖 ∶= 𝑢̂𝑖

√𝑠2
𝑢̂(1 − ℎ𝑖𝑖)

.

Standardized residuals are available using the R command rstandard().
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Residuals vs. Leverage Plot

Plotting standardized residuals against leverage values provides a graphical tool for detecting
outliers. High leverage points have a strong influence on the regression fit. High leverage values
with standardized residuals close to 0 are good leverage points, and high leverage values with
large standardized residuals are bad leverage points.

fit = lm(score ~ STR + english + lunch, data = CASchools)
plot(fit, which = 5)
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The plot indicates that some observations have a higher leverage value than others, but none
of these have a large standardized residual, so they are not bad leverage points.

Here is an example with two high leverage points. Observation 𝑖 = 200 is a good leverage
point and 𝑖 = 199 is a bad leverage point:

## simulate regressors and errors
X = rnorm(250)
u = rnorm(250)
## set some unusual observations manually
X[199] = 6
X[200] = 6
u[199] = 5
u[200] = 0
## define dependent variable
Y = X + u
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## residuals vs leverage plot
plot(lm(Y ~ X), which = 5)
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The plot also shows Cook’s distance thresholds. Cook’s distance for observation 𝑖 is defined
as

𝐷𝑖 =
( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)′𝑋𝑋𝑋′𝑋𝑋𝑋( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)

𝑘𝑠2
𝑢̂

,

where
̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖

𝑢̂𝑖
1 − ℎ𝑖𝑖

.

Here, ̂𝛽𝛽𝛽(−𝑖) is the 𝑖-th leave-one-out estimator (the OLS estimator when the 𝑖-th observation
is left out).

This principle is called Jackknife because it is similar to the way a jackknife is used to
cut something. The idea is to “cut” the data by removing one observation at a time and
then re-estimating the model. The impact of cutting the 𝑖-th observation is proportional to
𝑢̂𝑖/(1 − ℎ𝑖𝑖).
We should pay special attention to points outside Cook’s distance thresholds of 0.5 and 1 and
check for measurement errors or other anomalies.
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Jackknife Standard Errors

Recall the heteroskedasticity-robust White estimator for the meat matrix ΩΩΩ = 𝐸[𝑢2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] in
the sandwich formula tor the OLS variance:

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖.

If there are leverage points in the data, their presence might have a large influence on the
estimation of ΩΩΩ.

An alternative way of estimating the covariance matrix is to weight the observations by the
leverage values:

Ω̂ΩΩjack = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖.

Observations with high leverage values have a small denominator (1 − ℎ𝑖𝑖)2 and are therefore
downweighted, which makes this estimator more robust to the influence of leverage points.

The full jackknife covariance matrix estimator is conventionally labeled as the HC3 estima-
tor:

𝑉𝑉𝑉 jack = 𝑉𝑉𝑉 hc3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 Ω̂ΩΩjack (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 .
There is also the HC2 estimator, which uses 𝑢̂2

𝑖 (1 − ℎ𝑖𝑖) instead of 𝑢̂2
𝑖 /(1 − ℎ𝑖𝑖)2, but this is

less common.

The HC3 standard errors are:

𝑠𝑒ℎ𝑐3( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐3]𝑗𝑗.

If you have a small sample size and you are worried about influential observations, you should
use the HC3 standard errors instead of the HC1 standard errors.

To display the HC3 standard errors in the regression table, you can use modelsummary(fit,
vcov = "HC3").

6.8 Cluster-robust Inference

Recall that in many economic applications, observations are naturally clustered. For instance,
students within the same school, workers in the same firm, or households in the same village
may share common unobserved factors that induce correlation in their outcomes.
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As discussed in Section 5, for clustered observations we can use the notation (𝑋𝑋𝑋𝑖𝑔, 𝑌𝑖𝑔), where
the linear regression equation is:

𝑌𝑖𝑔 = 𝑋𝑋𝑋′
𝑖𝑔𝛽𝛽𝛽 + 𝑢𝑖𝑔, 𝑖 = 1, … , 𝑛𝑔, 𝑔 = 1, … , 𝐺.

Under independence across clusters but allowing for arbitrary correlation within clusters, the
OLS estimator remains unbiased, but its standard variance formula is no longer valid. As we
saw in Section 5, the conditional variance

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

satisfies

𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 =
𝐺

∑
𝑔=1

𝐸[(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)
′
∣𝑋𝑋𝑋].

Cluster-robust Standard Errors

When observations within clusters are correlated, using ordinary standard errors (even
heteroskedasticity-robust ones) will typically underestimate the true sampling variability of
the OLS estimator.

To account for within-cluster correlation, we use cluster-robust standard errors. The key
insight is to estimate the middle part of the sandwich formula above by allowing for arbitrary
within-cluster correlation, while maintaining the independence assumption across clusters.

The cluster-robust variance estimator is:

𝑉𝑉𝑉 𝐶𝑅0 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝐺

∑
𝑔=1

(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢̂𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢̂𝑖𝑔)
′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

This estimator, also known as the clustered sandwich estimator, allows for arbitrary cor-
relation of errors within clusters, including both heteroskedasticity and serial correlation. Like
the HC estimators, it is consistent under large-sample asymptotics.

Finite Sample Correction

Similar to the HC1 correction for heteroskedasticity, a small-sample correction for the cluster-
robust estimator is commonly applied:

𝑉𝑉𝑉 𝐶𝑅1 = 𝐺
𝐺 − 1 ⋅ 𝑛 − 1

𝑛 − 𝑘 ⋅ 𝑉𝑉𝑉 𝐶𝑅0,

where 𝐺 is the number of clusters, 𝑛 is the total sample size, and 𝑘 is the number of regressors.

The corresponding cluster-robust standard errors are:

𝑠𝑒𝐶𝑅1( ̂𝛽𝑗) = √[𝑉𝑉𝑉 𝐶𝑅1]𝑗𝑗.
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When to Cluster

You should use cluster-robust standard errors when:

1. There’s a clear grouping structure in your data (schools, villages, firms, etc.)
2. You expect errors to be correlated within these groups
3. You have a sufficient number of clusters (generally at least 30-50)

Common examples include: - Student-level data clustered by school or classroom - Firm-level
data clustered by industry - Individual-level data clustered by geographic region - Panel data
clustered by individual or time period

Implementation in R

The CASchools dataset contains information on 420 California Schools from 45 different coun-
ties, which can be viewed as clusters.

The fixest package makes it easy to implement cluster-robust standard errors:

feols(score ~ STR + english, data = CASchools, cluster = "county") |> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Clustered (county)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.032245 15.802838 43.41196 < 2.2e-16 ***
STR -1.101296 0.754387 -1.45986 0.15143
english -0.649777 0.030230 -21.49427 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 14.4 Adj. R2: 0.423681

After accounting for clustering, the coefficient on STR is no longer statistically significant.

You can also use the modelsummary() function to compare the same regression with different
standard errors:

fit1 = feols(score ~ STR + english, data = CASchools)
## List of standard errors:
myvcov = list("IID", "HC1", "HC3", ~county)
modelsummary(fit1, stars = TRUE, statistic = "conf.int", vcov = myvcov)
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(1) (2) (3) (4)
(Intercept) 686.032*** 686.032*** 686.032*** 686.032***

[671.464, 700.600] [668.875, 703.189] [668.710, 703.354] [654.969, 717.095]
STR −1.101** −1.101* −1.101* −1.101

[−1.849, −0.354] [−1.952, −0.250] [−1.960, −0.242] [−2.584, 0.382]
english −0.650*** −0.650*** −0.650*** −0.650***

[−0.727, −0.572] [−0.711, −0.589] [−0.711, −0.588] [−0.709, −0.590]
Num.Obs. 420 420 420 420
R2 0.426 0.426 0.426 0.426
R2 Adj. 0.424 0.424 0.424 0.424
AIC 3439.1 3439.1 3439.1 3439.1
BIC 3451.2 3451.2 3451.2 3451.2
RMSE 14.41 14.41 14.41 14.41
Std.Errors IID HC1 HC3 by: county

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Challenges with Cluster-robust Inference

The cluster-robust variance estimator relies on having a large number of clusters. With few
clusters (generally 𝐺 < 30), the estimator may be biased downward, leading to confidence
intervals that are too narrow and overly frequent rejection of null hypotheses.

To account for high leverage points, the CR3 correction is similar to HC3 and applies a leverage
adjustment at the cluster level:

𝑉𝑉𝑉 𝐶𝑅3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝐺

∑
𝑔=1

(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔
𝑢̂𝑖𝑔

1 − ℎ𝑖𝑔
)(

𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔
𝑢̂𝑖𝑔

1 − ℎ𝑖𝑔
)

′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

6.9 R-codes

metrics-sec06.R
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Part III

Panel Data Methods
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7 Fixed Effects

library(fixest)
library(modelsummary)
library(AER)

7.1 Panel Data

In panel data, we observe multiple individuals or entities over multiple time periods. Each
observation is indexed by both individual 𝑖 = 1, … , 𝑛 and time period 𝑡 = 1, … , 𝑇 . We denote
a variable 𝑌 for individual 𝑖 at time period 𝑡 as 𝑌𝑖𝑡.

Unlike cross-sectional data (which observes multiple individuals at a single point) or time series
data (which tracks a single individual over time), panel data combines both dimensions.

Economic applications include:

• Growth: GDP and productivity across countries over time
• Corporate finance: Firm investment and capital structure dynamics
• Labor economics: Individual wage trajectories and employment patterns
• International trade: Bilateral trade flows between country pairs over years

In the case of multiple regressor variables, we denote the 𝑗-th regressor for individual 𝑖 at time
period 𝑡 as 𝑋𝑗,𝑖𝑡, where 𝑗 = 1, … , 𝑘.
If each individual has observations for all time periods, we call this a balanced panel. The
total number of observations is 𝑛𝑇 .

In typical economic panel datasets, we often have 𝑛 > 𝑇 (more individuals than time points)
or 𝑛 ≈ 𝑇 (roughly the same number of individuals as time points).

When some observations are missing for at least one individual or time period, we have an
unbalanced panel.
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7.2 Pooled Regression

Model Setup

The simplest approach to panel data is the pooled regression, which treats all observations
as if they came from a single cross-section.

Consider a panel dataset with dependent variable 𝑌𝑖𝑡 and 𝑘 independent variables
𝑋1,𝑖𝑡, … , 𝑋𝑘,𝑖𝑡 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

The first regressor variable represents an intercept (i.e., 𝑋1,𝑖𝑡 = 1). We stack the regressor
variables into the 𝑘 × 1 vector:

𝑋𝑋𝑋𝑖𝑡 =
⎛⎜⎜⎜⎜
⎝

1
𝑋2,𝑖𝑡

⋮
𝑋𝑘,𝑖𝑡

⎞⎟⎟⎟⎟
⎠

.

Pooled Panel Regression Model

The pooled linear panel regression model equation for individual 𝑖 = 1, … , 𝑛 and time 𝑡 =
1, … , 𝑇 is:

𝑌𝑖𝑡 = 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡,

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖𝑡 is the error
term for individual 𝑖 at time 𝑡.
It is not reasonable to assume that 𝑌𝑖𝑡 and 𝑌𝑗𝑡 are independent. Therefore, the random
sampling assumption (A2) needs to be adapted to the cluster level. Instead of (A2), we
assume that

(𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 )
are i.i.d. draws from their joint population distribution for 𝑖 = 1, … , 𝑛.
This implies that observations across different individuals are independent. However, observa-
tions within an individual across time points may be dependent.

Therefore, to conduct inference about the population, we require 𝑛 to be large, while 𝑇 can
be small or large.

Furthermore, while 𝑋𝑋𝑋𝑖𝑠 and 𝑋𝑋𝑋𝑖𝑡 can now be correlated, we require that the regressors are
strictly exogenous, meaning 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋] = 0. Therefore, assumption (A1) must be replaced
by:

𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 ] = 0.
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Pooled OLS

The pooled OLS estimator is:

̂𝛽𝛽𝛽pool = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑌𝑖𝑡).

This can be written in matrix notation, where we define the pooled regressor matrix 𝑋𝑋𝑋 of
order 𝑛𝑇 × 𝑘 and the dependent variable vector 𝑌𝑌𝑌 of order 𝑛𝑇 × 1:

̂𝛽𝛽𝛽pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

Pooled OLS is unbiased and consistent under the following assumptions:

Pooled OLS Assumptions

• (A1-pool) 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 ] = 0

• (A2-pool) {(𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 )}𝑛
𝑖=1 is an i.i.d. sample

• (A3-pool) 𝑘𝑢𝑟(𝑌𝑖𝑡) < ∞ and 𝑘𝑢𝑟(𝑋𝑗,𝑖𝑡) < ∞
• (A4-pool) ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′

𝑖𝑡 is invertible

Under these assumptions, the asymptotic distribution of the pooled OLS estimator is:

√𝑛( ̂𝛽𝛽𝛽pool − 𝛽𝛽𝛽) 𝑑−→ 𝑁(0,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1), as 𝑛 → ∞,

where 𝑄𝑄𝑄 = 𝐸( 1
𝑇 ∑𝑇

𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡) and ΩΩΩ = 𝐸(( 1

𝑇 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)( 1

𝑇 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)′).

To illustrate, consider the Grunfeld dataset, which provides investment, capital stock, and
firm value data for 10 firms over 20 years:

data(Grunfeld, package = "AER")
head(Grunfeld)

invest value capital firm year
1 317.6 3078.5 2.8 General Motors 1935
2 391.8 4661.7 52.6 General Motors 1936
3 410.6 5387.1 156.9 General Motors 1937
4 257.7 2792.2 209.2 General Motors 1938
5 330.8 4313.2 203.4 General Motors 1939
6 461.2 4643.9 207.2 General Motors 1940
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fit_pool = lm(invest ~ capital, data = Grunfeld)
fit_pool

Call:
lm(formula = invest ~ capital, data = Grunfeld)

Coefficients:
(Intercept) capital

8.5651 0.4852

Cluster-Robust Inference

Let’s visualize the data:

plot(invest ~ capital, col = as.factor(firm), data = Grunfeld)
legend("bottomright", legend = unique(Grunfeld$firm), col = 1:10, pch = 1,

title = "Firm", cex = 0.8)
abline(fit_pool, col = "red")
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The observations appear in clusters, with each firm forming a cluster. This suggests potential
problems with the pooled approach if we use classical standard errors.

The error covariance matrix for panel data has a block-diagonal structure:

𝐷𝐷𝐷 = Var[𝑢𝑢𝑢|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝐷𝐷𝐷1 000 … 000
000 𝐷𝐷𝐷2 … 000
⋮ ⋮ ⋱ ⋮
000 000 … 𝐷𝐷𝐷𝑛

⎞⎟⎟⎟⎟
⎠

where 𝐷𝐷𝐷𝑖 is the 𝑇 × 𝑇 covariance matrix for individual 𝑖:

𝐷𝐷𝐷𝑖 =
⎛⎜⎜⎜⎜
⎝

𝐸[𝑢2
𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,1𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,1𝑢𝑖,𝑇 |𝑋𝑋𝑋]

𝐸[𝑢𝑖,2𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢2
𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,2𝑢𝑖,𝑇 |𝑋𝑋𝑋]

⋮ ⋮ ⋱ ⋮
𝐸[𝑢𝑖,𝑇 𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,𝑇 𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢2

𝑖,𝑇 |𝑋𝑋𝑋]

⎞⎟⎟⎟⎟
⎠

The variance of the pooled OLS estimator is:

Var[ ̂𝛽𝛽𝛽pool|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

The cluster-robust covariance matrix estimator is:

𝑉𝑉𝑉 pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑛

∑
𝑖=1

(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢̂𝑖𝑡)(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢̂𝑖𝑡)
′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

We can implement this using the fixest package:

# Pooled regression with fixest
fit_pool_fe = feols(invest ~ capital, data = Grunfeld)

# Incorrect Classical Standard Errors
summary(fit_pool_fe)

OLS estimation, Dep. Var.: invest
Observations: 220
Standard-errors: IID

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.565056 13.967368 0.613219 0.54037
capital 0.485191 0.035861 13.529645 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 154.9 Adj. R2: 0.453935
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# Cluster-robust standard errors (clustered by firm)
summary(fit_pool_fe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.565056 25.729726 0.332886 0.7460942
capital 0.485191 0.132374 3.665310 0.0043507 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 154.9 Adj. R2: 0.453935

7.3 Time-invariant Regressors

Consider a simple panel regression model:

𝑌𝑖𝑡 = 𝛽1 + 𝛽2𝑋𝑖𝑡 + 𝛽3𝑍𝑖 + 𝑢𝑖𝑡 (7.1)

Here, 𝑍𝑖 represents a time-invariant variable specific to individual 𝑖 (e.g., gender, ethnicity,
birthplace).

With the usual exogeneity condition 𝐸[𝑢𝑖𝑡|𝑋𝑖𝑡, 𝑍𝑖], the coefficient 𝛽2 can be interpreted as the
marginal effect of 𝑋𝑖𝑡 on 𝑌𝑖𝑡, holding 𝑍𝑖 constant.

The key advantage of panel data is that we can control for a time-invariant variable 𝑍𝑖 even
if it is unobserved.

To see this, consider data from just two time periods, 𝑡 = 1 and 𝑡 = 2. Taking the difference
between time periods:

𝑌𝑖2 − 𝑌𝑖1 = (𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑍𝑖 + 𝑢𝑖2) − (𝛽1 + 𝛽2𝑋𝑖1 + 𝛽3𝑍𝑖 + 𝑢𝑖1)
= 𝛽2(𝑋𝑖2 − 𝑋𝑖1) + (𝑢𝑖2 − 𝑢𝑖1)

This first-differencing transformation eliminates both the intercept 𝛽1 and the effect of the
time-invariant variable 𝛽3𝑍𝑖.

The coefficient 𝛽2 is simply the regression coefficient from the first-differenced model:

Δ𝑌𝑖 = 𝛽2Δ𝑋𝑖 + Δ𝑢𝑖,

where Δ𝑌𝑖 = 𝑌𝑖2 − 𝑌𝑖1, Δ𝑋𝑖 = 𝑋𝑖2 − 𝑋𝑖1, and Δ𝑢𝑖 = 𝑢𝑖2 − 𝑢𝑖1.
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Therefore, 𝛽2 can be estimated from a regression of Δ𝑌𝑖 on Δ𝑋𝑖 without intercept. We do
not need to observe 𝑍𝑖 to estimate 𝛽2 from model Equation 7.1.

We can combine the terms 𝛽1 and 𝛽3𝑍𝑖 into a single individual fixed effect 𝛼𝑖 = 𝛽1 + 𝛽3𝑍𝑖.
This term represents all unobserved, time-constant factors that affect the dependent variable.

7.4 The Fixed Effects Model

Let’s formalize the fixed effects model. Consider a panel dataset with dependent variable
𝑌𝑖𝑡, a vector of 𝑘 independent variables 𝑋𝑋𝑋𝑖𝑡, and an unobserved individual fixed effect 𝛼𝑖 for
𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

Fixed Effects Regression Model

The fixed effects regression model for individual 𝑖 = 1, … , 𝑛 and time 𝑡 = 1, … , 𝑇 is:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡 (7.2)

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients, 𝛼𝑖 is the individual fixed
effect, and 𝑢𝑖𝑡 is the error term.

Identification Assumptions

To identify 𝛽𝑗 as the ceteris paribus marginal effect of 𝑋𝑗,𝑖𝑡 on 𝑌𝑖𝑡, holding constant the fixed
effect 𝛼𝑖 and the other regressors, we need to make some assumptions.

1. Strict exogeneity conditional on fixed effects: 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 , 𝛼𝑖] = 0 for all
𝑡. This means that the error 𝑢𝑖𝑡 is uncorrelated with the regressors in all time periods,
conditional on the fixed effect.

2. Time-varying regressors: There must be variation in 𝑋𝑋𝑋𝑗,𝑖𝑡 over time within each
individual. Time-invariant regressors are absorbed by the fixed effect 𝛼𝑖 and cannot be
separately identified.

If strict exogeneity is violated (e.g., due to feedback effects where 𝑌𝑖𝑡 affects future values of
𝑋𝑋𝑋𝑖𝑠 for 𝑠 > 𝑡), then the fixed effects estimator will be inconsistent. In this case, dynamic panel
data models may be appropriate.
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First-Differencing Estimator

As shown earlier, we can eliminate the fixed effects by taking first differences. Using Δ𝑌𝑖𝑡 =
𝑌𝑖𝑡 − 𝑌𝑖,𝑡−1 as the dependent variable and inserting model Equation 7.2, we get:

Δ𝑌𝑖𝑡 = (Δ𝑋𝑋𝑋𝑖𝑡)′𝛽𝛽𝛽 + Δ𝑢𝑖𝑡 (7.3)

where Δ𝑋𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖,𝑡−1 and Δ𝑢𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1.

We can then apply OLS to this transformed model:

# Create first differences manually for demonstration
diffcapital = c(aggregate(Grunfeld$capital, by = list(Grunfeld$firm), FUN = diff)$x)
diffinvest = c(aggregate(Grunfeld$inv, by = list(Grunfeld$firm), FUN = diff)$x)

# First-difference regression
lm(diffinvest ~ diffcapital - 1)

Call:
lm(formula = diffinvest ~ diffcapital - 1)

Coefficients:
diffcapital

0.2307

A problem with this differenced estimator is that the transformed error term Δ𝑢𝑖𝑡 defines an
artificial correlation structure, which makes the estimator non-optimal. Δ𝑢𝑖,𝑡+1 = 𝑢𝑖,𝑡+1 − 𝑢𝑖,𝑡
is correlated with Δ𝑢𝑖,𝑡 = 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1 through 𝑢𝑖,𝑡.

Within Estimator

An efficient estimator can be obtained by a different transformation. The idea is to consider
the individual specific means

𝑌 𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑌𝑖𝑡, 𝑋𝑋𝑋𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡, 𝑢𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑢𝑖𝑡

Taking the means over 𝑡 of both sides of Equation 7.2 implies

𝑌 𝑖⋅ = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅. (7.4)
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Then, we subtract these means from the original equation:

𝑌𝑖𝑡 − 𝑌 𝑖⋅ = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢𝑖⋅)

The fixed effect 𝛼𝑖 drops out.

The deviations from the individual specific means are called within transformations:

̇𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅, 𝑋̇𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅, 𝑢̇𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅

The within-transfromed model equation is

̇𝑌𝑖𝑡 = 𝑋̇𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢̇𝑖𝑡 (7.5)

The within estimator (also called the fixed effects estimator) is:

̂𝛽𝛽𝛽fe = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡 ̇𝑌𝑖𝑡)

# Fixed effects estimation using fixest
fit_fe = feols(invest ~ capital, fixef = "firm", data = Grunfeld)
fit_fe$coefficients

capital
0.3707023

Fixed Effects Regression Assumptions

• (A1-fe) 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 , 𝛼𝑖] = 0.
• (A2-fe) (𝛼𝑖, 𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′

𝑖1, … ,𝑋𝑋𝑋′
𝑖𝑇 )𝑛

𝑖=1 is an i.i.d. sample.

• (A3-fe) 𝑘𝑢𝑟(𝑌𝑖𝑡) < ∞, 𝑘𝑢𝑟(𝑢𝑖𝑡) < ∞.

• (A4-fe) ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡 is invertible.

(A1-fe) is the same as (A1-pool), but now we condition on the unobserved fixed effect 𝛼𝑖.

(A2-fe) is a standard random sampling assumption indicating that individuals 𝑖 = 1, … , 𝑛 are
randomly sampled.

(A3-fe) ensures finite fourth moments, which is a requirement for asymptotic normality of the
estimator.

(A4-fe) is satisfied if there is no perfect multicollinearity and if no regressor is constant over
time for any individual.
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Under (A2-fe), the collection of the within-transformed variables of individual 𝑖,

( ̇𝑌𝑖1, … , ̇𝑌𝑖𝑇 , 𝑋̇𝑋𝑋𝑖1, … ,𝑋̇𝑋𝑋𝑖𝑇 , 𝑢̇𝑖1, … , 𝑢̇𝑖𝑇 ),

forms an i.i.d. sequence for 𝑖 = 1, … , 𝑛.
The within-transformed variables satisfy (A1-pool)–(A4-pool), which mean that its asymptotic
distribution is: √𝑛( ̂𝛽𝛽𝛽fe − 𝛽𝛽𝛽) 𝑑−→ 𝑁(0,𝑊𝑊𝑊 −1ΨΨΨ𝑊𝑊𝑊 −1), as 𝑛 → ∞,

where 𝑊𝑊𝑊 = 𝐸( 1
𝑇 ∑𝑇

𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡) and ΨΨΨ = 𝐸(( 1

𝑇 ∑𝑇
𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑢̇𝑖𝑡)( 1

𝑇 ∑𝑇
𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑢̇𝑖𝑡)′).

Hence, we can apply the cluster-robust covariance matrix estimator of the pooled regression
to the within-transformed variables:

# Inference with cluster-robust standard errors
summary(fit_fe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.370702 0.064785 5.72203 0.0001924 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 58.9 Adj. R2: 0.91717

Within R2: 0.659603

Dummy Variable Approach

An equivalent way to estimate the fixed effects model is to include a dummy variable for
each individual. This approach is known as the least squares dummy variable (LSDV)
estimator:

# Equivalent to fit_fe
fit_fe_lsdv = lm(invest ~ capital + factor(firm) - 1, data = Grunfeld)
fit_fe_lsdv$coefficients

capital factor(firm)General Motors
0.3707023 367.6436372

factor(firm)US Steel factor(firm)General Electric
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301.1715657 -46.0502428
factor(firm)Chrysler factor(firm)Atlantic Refining

41.1776965 -118.6424177
factor(firm)IBM factor(firm)Union Oil

16.7523079 -69.1553441
factor(firm)Westinghouse factor(firm)Goodyear

11.1445528 -68.5432229
factor(firm)Diamond Match factor(firm)American Steel

0.8819721 -18.3676804

The coefficient on the regressor capital is the same as in the within estimator. However, the
LSDV approach becomes computationally intensive with many individuals, and the standard
errors need to be adjusted for clustering.

7.5 Time Fixed Effects

While individual fixed effects control for unobserved heterogeneity across individuals, we might
also want to control for factors that vary over time but are constant across individuals (e.g.,
macroeconomic conditions, policy changes).

The time fixed effects model is:

𝑌𝑖𝑡 = 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡 (7.6)

where 𝜆𝑡 captures time-specific effects. Similar to individual fixed effects, we can rewrite this
model by demeaning across time:

𝑌𝑖𝑡 − 𝑌 ⋅𝑡 = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢⋅𝑡)

where the time-specific means are:

𝑌 ⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖𝑡, 𝑋𝑋𝑋⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑡, 𝑢⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑢𝑖𝑡.

Hence, we regress 𝑌𝑖𝑡 − 𝑌 ⋅𝑡 on 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡 to estimate 𝛽𝛽𝛽 in Equation 7.6.

# Time fixed effects
fit_timefe = feols(invest ~ capital, fixef = "year", data = Grunfeld)
summary(fit_timefe, cluster = "firm")
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OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.539676 0.163321 3.30438 0.0079544 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 151.1 Adj. R2: 0.430515

Within R2: 0.450115

7.6 Two-way Fixed Effects

We can combine both individual and time fixed effects in a two-way fixed effects model:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡 (7.7)

This model controls for both individual-specific and time-specific unobserved factors. To esti-
mate it, we apply a two-way transformation that subtracts individual means, time means, and
adds back the overall mean:

̈𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅ − 𝑌 ⋅𝑡 + 𝑌
𝑋̈𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅ − 𝑋𝑋𝑋⋅𝑡 + 𝑋𝑋𝑋

To see why this is useful, consider the following transformations applied to the left-hand side
of Equation 7.7:

• Individual specific mean:
𝑌 𝑖⋅ = 𝛼𝑖 + 𝜆 + 𝑋𝑋𝑋′

𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅,
where 𝜆 = 1

𝑇 ∑𝑇
𝑡=1 𝜆𝑡.

• Time specific mean:
𝑌 ⋅𝑡 = 𝛼 + 𝜆𝑡 + 𝑋𝑋𝑋′

⋅𝑡𝛽𝛽𝛽 + 𝑢⋅𝑡,
where 𝛼 = 1

𝑛 ∑𝑛
𝑖=1 𝛼𝑖.

• Total mean:

𝑌 = 1
𝑛𝑇

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑌𝑖𝑡 = 𝛼 + 𝜆 + 𝑋𝑋𝑋′𝛽𝛽𝛽 + 𝑢,

where 𝑋𝑋𝑋 = 1
𝑛𝑇 ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡 and 𝑢 = 1

𝑛𝑇 ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑢𝑖𝑡.
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The transformed model is:
̈𝑌𝑖𝑡 = 𝑋̈𝑋𝑋′

𝑖𝑡𝛽𝛽𝛽 + 𝑢̈𝑖𝑡 (7.8)

where 𝑢̈𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅ − 𝑢⋅𝑡 + 𝑢.
Hence, we estimate 𝛽𝛽𝛽 by regressing ̈𝑌𝑖𝑡 on 𝑋̈𝑋𝑋𝑖𝑡.

# Two-way fixed effects
fit_2wayfe = feols(invest ~ capital, fixef = c("firm", "year"), data = Grunfeld)
summary(fit_2wayfe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11, year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.40875 0.062522 6.53767 6.5744e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 54.7 Adj. R2: 0.921459

Within R2: 0.60632

For inference, we use cluster-robust standard errors:

# Cluster-robust standard errors
summary(fit_2wayfe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11, year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.40875 0.062522 6.53767 6.5744e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 54.7 Adj. R2: 0.921459

Within R2: 0.60632
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OLS-IID OLS-CL FE Time FE Two-way FE
(Intercept) 8.565 8.565

(13.967) (25.730)
capital 0.485*** 0.485** 0.371*** 0.540** 0.409***

(0.036) (0.132) (0.065) (0.163) (0.063)
Num.Obs. 220 220 220 220 220
R2 0.456 0.456 0.921 0.483 0.932
R2 Adj. 0.454 0.454 0.917 0.431 0.921
R2 Within 0.660 0.450 0.606
R2 Within Adj. 0.658 0.447 0.604
AIC 2847.2 2847.2 2441.9 2874.4 2447.2
BIC 2854.0 2854.0 2482.7 2945.6 2552.4
RMSE 154.91 154.91 58.93 151.14 54.70
Std.Errors IID by: firm by: firm by: firm by: firm
FE: firm X X
FE: year X X

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

7.7 Comparison of Panel Models

Let’s compare the different panel regression approaches:

# Create a list of models
models = list(
"OLS-IID" = feols(invest ~ capital, data = Grunfeld),
"OLS-CL" = feols(invest ~ capital, data = Grunfeld, cluster = "firm"),
"FE" = feols(invest ~ capital, fixef = "firm", data = Grunfeld, cluster = "firm"),
"Time FE" = feols(invest ~ capital, fixef = "year", data = Grunfeld, cluster = "firm"),
"Two-way FE" = feols(invest ~ capital, fixef = c("firm", "year"), data = Grunfeld, cluster = "firm")

)

# Generate the comparison table with clustered standard errors
modelsummary(models, stars = TRUE)
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7.8 Panel R-squared

In panel data models with fixed effects, two different R-squared measures provide distinct
information about model fit:

Within R-squared

The within R-squared measures the proportion of within-individual variation explained by the
model. For the three different fixed effects specifications, the within R-squared is defined as
follows:

• For individual fixed effects:

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1( ̇𝑌𝑖𝑡 − 𝑋̇𝑋𝑋′

𝑖𝑡 ̂𝛽𝛽𝛽)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1
̇𝑌 2
𝑖𝑡

• For time fixed effects:

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1(𝑌𝑖𝑡 − 𝑌 ⋅𝑡 − (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡)′ ̂𝛽𝛽𝛽)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 ⋅𝑡)2

• For two-way fixed effects:

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1( ̈𝑌𝑖𝑡 − 𝑋̈𝑋𝑋′

𝑖𝑡 ̂𝛽𝛽𝛽)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1
̈𝑌 2
𝑖𝑡

In the panel models for the Grunfeld data, the individual fixed effects model has the highest
within R-squared (0.660), suggesting that within-firm variations in capital explain 66% of
within-firm variations in investment.

This drops to 0.450 in the time fixed effects model, indicating that year-specific factors share
substantial variation with capital stock within each year.

The higher within R-squared for individual fixed effects (0.660) compared to time fixed effects
(0.450) suggests that firm-specific characteristics play a greater role in explaining variation in
investment than year-specific factors.

The two-way fixed effects model shows an intermediate within R-squared (0.606). This model
controls for more confounding factors from both dimensions, resulting in an estimate that is
likely closer to the true causal effect of capital on investment, though with somewhat reduced
statistical power.
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Overall R-squared

The overall R-squared measures how well the complete model (including fixed effects) explains
the total variation:

𝑅2
𝑜𝑣 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1(𝑌𝑖𝑡 − ̂𝑌𝑖𝑡)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 )2

Here, ̂𝑌𝑖𝑡 is the fitted value of the corresponding model.

The overall R-squared values reveal how different specifications explain investment variation:
pooled OLS (45.6%), firm fixed effects (92.1%), time fixed effects (48.3%), and two-way fixed
effects (93.2%). The large jump when adding firm fixed effects, compared to the minimal
improvement from time fixed effects, confirms that firm-specific characteristics are far more
important determinants of investment behavior than year-specific factors.

The within R-squared is typically more relevant because it isolates the relationship of inter-
est after controlling for unobserved heterogeneity. However, if you’re interested in overall
predictive power, the overall R-squared provides that information.

Fitted Values

The overall R-squared requires the computation of the fitted values ̂𝑌𝑖𝑡. To compute them, we
require some estimates or averages of the fixed effects themselves.

• For individual fixed effects:

̂𝑌𝑖𝑡 = ̂𝛼𝑖 + 𝑋𝑋𝑋′
𝑖𝑡 ̂𝛽𝛽𝛽

̂𝛼𝑖 = 𝑌 𝑖⋅ − 𝑋𝑋𝑋′
𝑖⋅ ̂𝛽𝛽𝛽

• For time fixed effects:

̂𝑌𝑖𝑡 = 𝜆̂𝑡 + 𝑋𝑋𝑋′
𝑖𝑡 ̂𝛽𝛽𝛽

𝜆̂𝑡 = 𝑌 ⋅𝑡 − 𝑋𝑋𝑋′
⋅𝑡 ̂𝛽𝛽𝛽

• For two-way fixed effects:
̂𝑌𝑖𝑡 = ̂𝛼𝑖 + 𝜆̂𝑡 − ̂𝜇 + 𝑋𝑋𝑋′

𝑖𝑡 ̂𝛽𝛽𝛽,
where

̂𝛼𝑖 = 𝑌 𝑖⋅ − 𝑋𝑋𝑋′
𝑖⋅ ̂𝛽𝛽𝛽 − ̂𝜇

𝜆̂𝑡 = 𝑌 ⋅𝑡 − 𝑋𝑋𝑋′
⋅𝑡 ̂𝛽𝛽𝛽 − ̂𝜇

̂𝜇 = 𝑌 − 𝑋𝑋𝑋′ ̂𝛽𝛽𝛽
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While these fixed effects estimates are useful for calculating fitted values, they are not recom-
mended for direct interpretation. Fixed effects capture all time-invariant (or unit-invariant)
factors, observed and unobserved, making them a “black box” rather than specific causal
parameters.

7.9 Application: Traffic Fatalities

To illustrate the importance of fixed effects in empirical work, let’s examine how government
policies affect traffic fatalities. We’ll use the Fatalities dataset from the AER package, which
contains panel data on traffic fatalities, drunk driving laws, and beer taxes for U.S. states from
1982 to 1988.

data(Fatalities, package = "AER")
# Create the fatality rate per 10,000 population
Fatalities$fatal_rate = Fatalities$fatal / Fatalities$pop * 10000

Cross-sectional Analysis

First, let’s examine the relationship between beer taxes and traffic fatality rates using pooled
OLS:

fatal_cs = feols(fatal_rate ~ beertax, data = Fatalities, cluster = "state")
summary(fatal_cs)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.853308 0.118519 15.63719 < 2.2e-16 ***
beertax 0.364605 0.119686 3.04636 0.0037916 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.542116 Adj. R2: 0.090648

Surprisingly, we find a positive relationship between beer taxes and fatality rates. This coun-
terintuitive result likely stems from omitted variable bias.
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Fixed Effects Approach

Now, let’s use the panel structure to control for unobserved state-specific factors:

# State fixed effects model
fatal_fe = feols(fatal_rate ~ beertax, fixef = "state", data = Fatalities, cluster = "state")
summary(fatal_fe)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Fixed-effects: state: 48
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
beertax -0.655874 0.291856 -2.24725 0.029358 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.17547 Adj. R2: 0.889129

Within R2: 0.040745

With state fixed effects, the coefficient becomes negative, aligning with our theoretical expec-
tation that higher beer taxes should reduce drunk driving and fatalities.

Let’s add time fixed effects

# State fixed effects model
fatal_twoway = feols(fatal_rate ~ beertax, fixef = c("state", "year"), data = Fatalities, cluster = "state")
summary(fatal_twoway)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Fixed-effects: state: 48, year: 7
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
beertax -0.63998 0.357078 -1.79227 0.079528 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.171819 Adj. R2: 0.891425

Within R2: 0.036065

Finally, let’s add control variables that are neither constant over time nor across states:
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Fatalities$punish = ifelse(Fatalities$jail == "yes" | Fatalities$service == "yes",
"yes", "no")

fatal_full = feols(fatal_rate ~ beertax + drinkage + punish + miles + unemp + log(income), fixef = c("state", "year"),
data = Fatalities, cluster = "state")

NOTE: 1 observation removed because of NA values (RHS: 1).

summary(fatal_full)

OLS estimation, Dep. Var.: fatal_rate
Observations: 335
Fixed-effects: state: 48, year: 7
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
beertax -0.45646674 0.30680756 -1.487795 0.14348400
drinkage -0.00215674 0.02151945 -0.100223 0.92059358
punishyes 0.03898148 0.10316089 0.377871 0.70722783
miles 0.00000898 0.00000710 1.265052 0.21208923
unemp -0.06269441 0.01322938 -4.739031 0.00002021 ***
log(income) 1.78643540 0.64339251 2.776587 0.00786399 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.140556 Adj. R2: 0.926185

Within R2: 0.356781

This comprehensive model still produces a negative coefficient, though effect becomes insignif-
icant with the addition of control variables.

# Create model list
fatal_models = list(
fatal_cs,
fatal_fe,
fatal_twoway,
fatal_full

)
# Generate comparison table
modelsummary(fatal_models, stars = TRUE)

The changing sign of the beertax coefficient across specifications illustrates the importance of
controlling for unobserved heterogeneity in panel data:
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(1) (2) (3) (4)
(Intercept) 1.853***

(0.119)
beertax 0.365** −0.656* −0.640+ −0.456

(0.120) (0.292) (0.357) (0.307)
drinkage −0.002

(0.022)
punishyes 0.039

(0.103)
miles 0.000

(0.000)
unemp −0.063***

(0.013)
log(income) 1.786**

(0.643)
Num.Obs. 336 336 336 335
R2 0.093 0.905 0.909 0.939
R2 Adj. 0.091 0.889 0.891 0.926
R2 Within 0.041 0.036 0.357
R2 Within Adj. 0.037 0.033 0.343
AIC 546.1 −117.9 −120.1 −243.9
BIC 553.7 69.1 89.9 −15.1
RMSE 0.54 0.18 0.17 0.14
Std.Errors by: state by: state by: state by: state
FE: state X X X
FE: year X X

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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1. In the pooled model, the positive coefficient might reflect that states with higher fatality
rates tend to implement higher beer taxes as a policy response.

2. Once we control for state fixed effects, we isolate the within-state variation and find the
expected negative relationship: when a state raises its beer tax, fatality rates decrease.

3. Adding year fixed effects accounts for national trends in fatality rates, such as changes
in vehicle safety technology or nationwide campaigns against drunk driving.

4. In the full model with additional controls, the beer tax coefficient remains negative but
loses statistical significance. This suggests that its effect may be partially captured by
other policy variables or that we lack statistical power to precisely estimate the effect
when including multiple controls.

7.10 R-codes

metrics-sec06.R
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Part IV

Causal Inference
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8 Endogeneity

8.1 The Linear Model and Exogeneity

So far we have written the conditional mean of an outcome 𝑌𝑖 as a linear function of observed
covariates 𝑋𝑋𝑋𝑖:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖,

𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 (A1)

If (A1) holds, then 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽, which makes 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 the best predictor of 𝑌𝑖 given 𝑋𝑋𝑋𝑖.
Each coefficient 𝛽𝑗 is a conditional marginal effect:

Interpretation: “Among individuals who share the same values of all included
control variables, those whose 𝑋𝑖𝑗 is higher by one unit have, on average, a 𝑌𝑖 that
is higher by 𝛽𝑗.”

So far the course has provided three empirical tactics to narrow the gap between correlation
and causation:

• Add observed confounders. Whenever economic theory identifies a variable that influ-
ences both 𝑋𝑖𝑗 and 𝑌𝑖, we try to measure it and augment 𝑋𝑋𝑋𝑖.

• Exploit panel structure. With panel data data we include individual and time fixed
effects to control for unobserved factors that are constant across individuals or time
periods.

• Use flexible functional forms. Polynomials, interactions, or other transformations can
absorb nonlinearities that would otherwise leak into 𝑢𝑖.

Even after taking these steps, important issues remain. For example, there may be reverse
causality, which occurs when 𝑌𝑖 feeds back into 𝑋𝑖. Additionally, there may be control variables
with a dual role that act as both confounders and mediators/colliders simultaneously.

Nothing in (A1) – nor in the additional assumptions (A2)–(A4) about i.i.d. sampling, finite
moments, and full rank – guarantees that 𝛽𝑗 is causal. It represents only a conditional
correlative relationship unless 𝑋𝑖𝑗 is uncorrelated with all unobserved determinants of 𝑌𝑖.
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8.2 Conditional vs Causal Effects: Price Elasticities

Economists often want causal price effects, not merely conditional associations. Consider
the following structural system in a competitive market written in logs so that slopes are
elasticities:

Demand: log(𝑄𝑖) = 𝛽1 + 𝛽2 log(𝑃𝑖) + 𝑢𝑖,
Supply (pricing rule): log(𝑃𝑖) = 𝛾1 + 𝛾2 log(𝐶𝑖) + 𝛾3𝑢𝑖 + 𝜂𝑖.

We have 𝛽2 < 0 by theory.

• Index 𝑖 denotes a market (e.g., city or store) observed at a single point in time; the data
are cross‑sectional and i.i.d.

• 𝑄𝑖 is the total quantity demanded in market 𝑖.
• 𝑃𝑖 is price.
• 𝐶𝑖 is the exogenous wholesale cost of the product.
• 𝑢𝑖 captures consumers’ taste shocks unobserved by the econometrician (though retailers

may infer them and respond when setting prices); 𝜂𝑖 captures supply‑side shocks.

Because higher demand (large 𝑢𝑖) in a particular store leads retailers to charge higher prices
(𝛾3 > 0), we have 𝐶𝑜𝑣(log(𝑃𝑖), 𝑢𝑖) > 0. Hence, (A1) is violated in the demand equation.

Suppose a researcher estimates

log(𝑄𝑖) = 𝛼1 + 𝛼2 log(𝑃𝑖) + 𝜀𝑖

or
log(𝑄𝑖) = 𝜃1 + 𝜃2 log(𝑃𝑖) + 𝜃3 log(𝐶𝑖) + 𝑣𝑖

Both regressions (one simple and one with wholesale‑cost controls) deliver conditional marginal
effects 𝛼2 or 𝜃2. They answer

“Among markets with the same wholesale cost (and any other included controls),
how does observed quantity co‑move with observed price?”

But the policy‑relevant question is different:

“By how much would quantity fall if we exogenously raised price – say, via a 1%
tax – holding everything else constant?”

That causal elasticity is 𝛽2. Because 𝑃𝑖 responds to 𝑢𝑖, OLS estimates suffer simultaneity bias
and 𝛼2 or 𝜃2 generally differ from 𝛽2.

Endogeneity arises because we want the parameter to be causal, not because the regression
is mechanically misspecified. Even if the conditional mean is correctly linear, interpreting 𝛽2
causally implies 𝐶𝑜𝑣(log(𝑃𝑖), 𝑢𝑖) ≠ 0.
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8.3 Measurement Error

Another important source of endogeneity arises from measurement error. Suppose we consider
the structural model:

𝑌 0
𝑖 = 𝛽1 + 𝛽2𝑋0

𝑖 + 𝑢0
𝑖 , 𝑖 = 1, … , 𝑛, 𝑢0

𝑖 ∼ i.i.d.(0, 𝜎2),

but we do not observe the latent variables 𝑌 0
𝑖 and 𝑋0

𝑖 directly. Instead, we observe:

𝑌𝑖 = 𝑌 0
𝑖 + 𝜂𝑖, 𝑋𝑖 = 𝑋0

𝑖 + 𝜁𝑖,

where 𝜂𝑖 ∼ i.i.d.(0, 𝜎2
𝜂) and 𝜁𝑖 ∼ i.i.d.(0, 𝜎2

𝜁) denote classical measurement errors that are
assumed independent of each other and of 𝑋0

𝑖 , 𝑌 0
𝑖 , and 𝑢0

𝑖 .

Plugging the observed variables into the structural equation yields:

𝑌𝑖 − 𝜂𝑖 = 𝛽1 + 𝛽2(𝑋𝑖 − 𝜁𝑖) + 𝑢0
𝑖 ,

which can be rearranged as:

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + (𝑢0
𝑖 + 𝜂𝑖 − 𝛽2𝜁𝑖)⏟⏟⏟⏟⏟⏟⏟

composite error term

.

The composite error term is problematic:

𝐸[𝑢0
𝑖 + 𝜂𝑖 − 𝛽2𝜁𝑖 ∣ 𝑋𝑖] ≠ 0,

because 𝑋𝑖 contains 𝜁𝑖, which also appears in the error term. This violates the exogeneity
condition, resulting in a biased and inconsistent OLS estimator. Specifically, the bias tends
to attenuate the coefficient estimate ̂𝛽2 toward zero (known as attenuation bias). For positive
true coefficients, this leads to underestimation; for negative coefficients, overestimation.

By contrast, if only the dependent variable 𝑌𝑖 is measured with error, OLS remains unbiased,
although the variance of the error term increases.
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8.4 Endogeneity as a Violation of (A1)

Formally, a regressor 𝑋𝑖𝑗 is endogenous if it correlates with the structural error term:

𝐶𝑜𝑣(𝑋𝑖𝑗, 𝑢𝑖) ≠ 0 ⇒ 𝐸[𝑢𝑖 ∣ 𝑋𝑖] ≠ 0

When this happens, OLS estimates remain descriptive but lose their causal interpretation.
Whether you care depends on your goal:

Purpose Is (A1) needed? Parameter meaning
Prediction /
description

No. Bias relative to causal truth is
irrelevant if forecasting is the aim.

Conditional marginal effect

Causal policy
evaluation

Yes! You need 𝐸[𝑢|𝑋] = 0 in the
causal sense, or an alternative
identification strategy.

Structural (causal) effect

8.5 Sources of Endogeneity

Besides the functional-form misspecification that we have already discussed in previous sec-
tions, there are four other common sources of endogeneity in practice:

Mechanism Typical manifestation
Omitted‑variable bias Unobserved ability affects both schooling (𝑋) and wages

(𝑌 )
Simultaneity / reverse
causality

Price and quantity determined jointly in markets

Measurement error in 𝑋 Measurement error inflates the variance of the regressor,
so OLS slopes are biased toward zero (attenuation bias)

Dual role controls A variable (e.g., health) acts as both confounder and
mediator/collider

All four cases yield 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] ≠ 0 and threaten causal inference.

We have
𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] ≠ 𝛽𝛽𝛽.
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9 Instrumental Variables

library(fixest)

In Section 8, we discussed endogeneity problems that lead to the inconsistency of the ordinary
least squares (OLS) estimator. One important solution is the instrumental variables (IV)
method, which allows for consistent estimation under certain conditions when regressors are
endogenous.

9.1 Endogenous Regressors Model

In most applications only a subset of the regressors are treated as endogenous.

Let’s assume that we have 𝑘 endogenous regressors 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′ and 𝑟 exogenous
regressors 𝑊𝑊𝑊 𝑖 = (1, 𝑊𝑖2, … , 𝑊𝑖𝑟)′.

In many practical applications the number of endogenous regressors 𝑘 is small (like 1 or 2).
The exogenous regressors 𝑊𝑊𝑊 𝑖 include the intercept, which is constant and therefore exogenous,
and all control variables for which we do not wish to interpret their coefficients in a causal
sense.

Consider the linear model equation:
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′
𝑖𝛾𝛾𝛾 + 𝑢𝑖, 𝑖 = 1, … , 𝑛. (9.1)

We have

• the dependent variable 𝑌𝑖;
• the error term 𝑢𝑖;
• the endogenous regressors 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′;
• the regression coefficients of interest 𝛽𝛽𝛽;
• the remaining 𝑟 regressors 𝑊𝑊𝑊 𝑖 = (1, 𝑊𝑖2, … , 𝑊𝑖𝑟)′, which are assumed to be exogenous

or simply control variables;
• the regression coefficients of the exogenous variables 𝛾𝛾𝛾.

Recall (A1), which is in this case given by 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖,𝑊𝑊𝑊 𝑖] = 0 but fails under endogeneity.

Since 𝑋𝑋𝑋𝑖 is endogenous, we have 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] ≠ 000, which is a violation of (A1). Thus, the OLS
estimator ̂𝛽𝛽𝛽 for 𝛽𝛽𝛽 is inconsistent.
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9.2 Instrumental Variables Model

To consistently estimate 𝛽𝛽𝛽 in the endogenous regressors model we require additional informa-
tion. One type of information which is commonly used in economic applications are what we
call instruments.

A vector of instrumental variables (IV) 𝑍𝑍𝑍𝑖 = (𝑍𝑖1, … , 𝑍𝑖𝑚) for the endogenous variable
𝑋𝑖𝑗 is a variable that is

1) relevant, meaning that it has a non-zero conditional marginal effect on 𝑋𝑖𝑗 after con-
trolling for 𝑊𝑊𝑊 𝑖. That is, when regressing 𝑋𝑖𝑗 on 𝑍𝑍𝑍𝑖 and 𝑊𝑊𝑊 𝑖 we have:

𝑋𝑖𝑗 = 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 + 𝑣𝑖𝑗, 𝜋𝜋𝜋1𝑗 ≠ 000. (9.2)

2) exogenous with respect to the error term 𝑢𝑖, i.e.:

𝐸[𝑍𝑍𝑍𝑖𝑢𝑖] = 000. (9.3)

This means 𝑍𝑍𝑍𝑖 doesn’t have a direct causal effect on 𝑌𝑖 after controlling for 𝑊𝑊𝑊 𝑖, only an
indirect effect through the endogenous variable 𝑋𝑖𝑗.

If there are 𝑘 endogenous regressors, we need at least 𝑘 instruments. If 𝑚 = 𝑘, we say that
the coefficients are exactly identified and if 𝑚 > 𝑘 we say that they are overidentified. Then
the relevance condition can be expressed jointly as:

rank(𝐸[ ̃𝑍𝑍𝑍𝑖𝑋𝑋𝑋′
𝑖]) = 𝑘 (9.4)

where ̃𝑍𝑍𝑍𝑖 ∶= (𝑍𝑍𝑍′
𝑖,𝑊𝑊𝑊 ′

𝑖)′.

Because 𝜋𝜋𝜋1𝑗 ≠ 000, some part of the variation in 𝑋𝑖𝑗 can be explained by 𝑍𝑍𝑍𝑖. Because 𝑍𝑍𝑍𝑖 is
exogenous, that part of the variation in 𝑋𝑖𝑗 explained by 𝑍𝑍𝑍𝑖 is exogenous as well and can be
used to estimate 𝛽𝑗 consistently.

Example 1: Years of schooling -> wage (returns to education). Ability bias: unobserved
ability affects both education choices and wages. Possible instruments for years of schooling:
distance to nearest colleges, school construction programs, quarter-of-birth, birth order.

Example 2: Market price -> quantity demanded (price elasticity of demand). Simultaneity:
quantity demanded feeds back into equilibrium price. Possible instruments for market price:
input-costs (e.g., raw materials, energy costs), weather conditions, tax changes.

Example 3: Police presence -> crime (deterrence effect). Reverse causality: more police
are deployed to high-crime areas. Possible instruments for police presence: election cycles,
sports/large public events, fire-fighters employment.

The idea of instrumental variable regression is to decompose the endogenous regressor 𝑋𝑖𝑗
into two parts: the “good” exogenous variation explained by the exogenous instruments 𝑍𝑍𝑍𝑖
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and further exogenous control variables, and the “bad” endogenous variation that is correlated
with the error term 𝑢𝑖.

This is exactly what is done in Equation 9.2: 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 +𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 is the part of 𝑋𝑖𝑗 that is exogenous
and 𝑣𝑖𝑗 is the part of 𝑋𝑖𝑗 that is endogenous.

9.3 Two Stage Least Squares

The two stage least squares (TSLS) estimator exploits exactly the idea discussed above: first
extracting the exogenous part of the endogenous regressors explained by the instruments as
described in Equation 9.2 and then use only this exogenous part to estimate the causal rela-
tionship of interest.

The first stage regression is:
𝑋𝑖𝑗 = 𝑍𝑍𝑍′

𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′
𝑖𝜋𝜋𝜋2𝑗 + 𝑣𝑖𝑗.

This equation is sometimes called the reduced form equation for 𝑋𝑖𝑗. We estimate this regres-
sion for 𝑗 = 1, … , 𝑘 and collect the fitted values

𝑋𝑖𝑗 = 𝑍𝑍𝑍′
𝑖 ̂𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖 ̂𝜋𝜋𝜋2𝑗, 𝑗 = 1, … , 𝑘, 𝑖 = 1, … , 𝑛.

Let
𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′, 𝑖 = 1, … , 𝑛.

be the vector of the fitted values for the 𝑘 endogenous variables from the first stage.

Note that 𝑋𝑋𝑋𝑖 is a function of 𝑍𝑍𝑍𝑖 and 𝑊𝑊𝑊 𝑖 and is therefore exogenous, i.e., uncorrelated with
𝑢𝑖.

Then, the second stage regression is

𝑌𝑖 = 𝑋𝑋𝑋
′
𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾 + 𝑤𝑖, 𝑖 = 1, … , 𝑛. (9.5)

Note that 𝑤𝑖 absorbs 𝑣𝑖𝑗, the part of 𝑋𝑖𝑗 that is endogenous. Therefore, the second stage re-
gression does not suffer any more from an endogeneity problem and can be used to consistently
estimate 𝛽𝛽𝛽.
The OLS estimator of the second stage (Equation 9.5), denoted as ̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆 is called the two-
stage least squares estimator for 𝛽𝛽𝛽.
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9.4 TSLS Assumptions

• (A1-iv) 𝐸[𝑢𝑖|𝑊𝑊𝑊 𝑖] = 0.
• (A2-iv) (𝑌𝑖,𝑋𝑋𝑋′

𝑖,𝑊𝑊𝑊 ′
𝑖,𝑍𝑍𝑍′

𝑖)𝑛
𝑖=1 is an i.i.d. sample.

• (A3-iv) All variables have finite kurtosis.

• (A4-iv) The instrument exogeneity and relevance conditions from Equation 9.3 and Equa-
tion 9.4 hold, and 𝐸[ ̃𝑍𝑍𝑍𝑖 ̃𝑍𝑍𝑍

′
𝑖] is invertible

(A1-iv) is the exogeneity condition for the control variables 𝑊𝑊𝑊 𝑖.

(A2-iv) is the standard random sampling assumption for the data.

(A3-iv) is the standard light-tails assumption, meaning large outliers are unlikely

(A4-iv) is the exogeneity and relevance condition for the instruments together with a condition
that excludes perfect multicollinearity

9.5 Large-Sample Properties of TSLS

Under assumptions (A1-iv)–(A4-iv), the TSLS estimator is consistent:

̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆
𝑝

→ 𝛽𝛽𝛽 (as 𝑛 → ∞).

Furthermore, the estimator is asymptotically normal:

√𝑛( ̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000,𝑉𝑉𝑉 𝑇 𝑆𝐿𝑆),

where
𝑉𝑉𝑉 𝑇 𝑆𝐿𝑆 = (𝑄𝑄𝑄𝑋𝑍𝑄𝑄𝑄−1

𝑍𝑍𝑄𝑄𝑄𝑍𝑋)−1𝑄𝑄𝑄𝑋𝑍𝑄𝑄𝑄−1
𝑍𝑍ΩΩΩ𝑄𝑄𝑄−1

𝑍𝑍𝑄𝑄𝑄𝑍𝑋(𝑄𝑄𝑄𝑋𝑍𝑄𝑄𝑄−1
𝑍𝑍𝑄𝑄𝑄𝑍𝑋)−1,

with
𝑄𝑄𝑄𝑋𝑍 = 𝐸[𝑋𝑋𝑋𝑖 ̃𝑍𝑍𝑍

′
𝑖], 𝑄𝑄𝑄𝑍𝑋 = 𝐸[ ̃𝑍𝑍𝑍𝑖𝑋𝑋𝑋′

𝑖], 𝑄𝑄𝑄𝑍𝑍 = 𝐸[ ̃𝑍𝑍𝑍𝑖 ̃𝑍𝑍𝑍
′
𝑖], ΩΩΩ = 𝐸[𝑢2

𝑖 ̃𝑍𝑍𝑍𝑖 ̃𝑍𝑍𝑍
′
𝑖].

The asymptotic variance can be estimated as:

𝑉𝑉𝑉 𝑇 𝑆𝐿𝑆 = 𝑛
𝑛 − 𝑘 − 𝑟( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋
′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋

′
𝑖)( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋
′
𝑖)

−1

This is the HC1 covariance matrix estimator for the TSLS estimator. It can be used to
construct confidence intervals, t-tests, and F-tests in the usual way as discussed in previous
sections.
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9.6 Example: Return of Education

Consider a wage equation for a cross-section of 429 married women:

log(wage) = 𝛽1 + 𝛽2educ𝑖 + 𝛽3exper𝑖 + 𝛽4exper2
𝑖 + 𝑢𝑖,

where

• wage is the wife’s 1975 average hourly earnings
• educ is her educational attainment in years
• exper are the actual years of her labor market experience

We use the dataset mroz available in this repository: link.

OLS yields:

feols(log(wage) ~ educ + exper + exper^2, data = mroz, vcov = "HC1")

OLS estimation, Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.522041 0.201650 -2.58884 9.9611e-03 **
educ 0.107490 0.013219 8.13147 4.7203e-15 ***
exper 0.041567 0.015273 2.72156 6.7651e-03 **
I(exper^2) -0.000811 0.000420 -1.93108 5.4139e-02 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.663299 Adj. R2: 0.150854

If educ is correlated with omitted variables like ability or motivation, the estimated coefficient
for educ does not represent the causal effect of educ on wage.

Ability is an unobserved confounder that affects both educ and wage.

In the following, we assume that mother’s education (mothereduc) is a valid instrument for
educ in the wage equation because:

1) mothereduc should not appear in a wife’s wage equation
2) Instrument relevance: mothereduc should be correlated with educ: high educated mothers

typically have high educated daughters
3) Instrument exogeneity: assume that a woman’s ability and motivation are uncorrelated

with mothereduc
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The first stage regression is:

firststage = lm(educ ~ mothereduc + exper + I(exper^2), data = mroz)
firststage

Call:
lm(formula = educ ~ mothereduc + exper + I(exper^2), data = mroz)

Coefficients:
(Intercept) mothereduc exper I(exper^2)

9.775103 0.267691 0.048862 -0.001281

The second stage regression is:

Xhat = firststage$fitted.values
secondstage = lm(log(wage) ~ Xhat + exper + I(exper^2), data = mroz)
secondstage

Call:
lm(formula = log(wage) ~ Xhat + exper + I(exper^2), data = mroz)

Coefficients:
(Intercept) Xhat exper I(exper^2)
0.1981861 0.0492630 0.0448558 -0.0009221

Note that standard errors from these two separate steps should not be used. Instead, the
feols function gives you the correct standard errors by using the following notation:

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.198186 0.489146 0.405167 0.6855588
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fit_educ 0.049263 0.038040 1.295045 0.1960095
exper 0.044856 0.015604 2.874667 0.0042481 **
I(exper^2) -0.000922 0.000432 -2.135025 0.0333316 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.67642 Adj. R2: 0.116926
F-test (1st stage), educ: stat = 73.9 , p < 2.2e-16 , on 1 and 424 DoF.

Wu-Hausman: stat = 2.9683, p = 0.085642, on 1 and 423 DoF.

• The coefficient for educ drops from 0.107 to 0.059
• OLS overestimates the impact of education on wages
• The t-statistic has a p-value of 0.19
• Using mothereduc as an instrument, educ is no longer significant

To improve the precision of the IV estimator, we can include further instruments like fathere-
duc

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 **
I(exper^2) -0.000899 0.000430 -2.090220 0.0371931 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551 Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , p < 2.2e-16 , on 2 and 423 DoF.

Wu-Hausman: stat = 2.79259 , p = 0.095441, on 1 and 423 DoF.
Sargan: stat = 0.378071, p = 0.538637, on 1 DoF.

• Estimated return to education increases from 0.049 to 0.061
• The t-statistic has a p-value of 0.066
• Stronger instruments leads to more efficient IV estimation: educ is now significantly

different from zero at least at the 10% level.

156



9.7 IV Diagnostics

The TSLS estimator relies on the exogeneity and relevance of the instruments. In empirical
applications, these assumptions should be critically assessed. This section introduces three
diagnostic tools used to evaluate different aspects of the IV strategy:

• The F-test for instrument relevance
• The Sargan test for instrument exogeneity
• The Wu-Hausman test for regressor endogeneity

F-test for instrument relevance

The first-stage F-test indicates whether the instruments 𝑍𝑍𝑍𝑖 ∈ ℝ𝑚 contain enough informa-
tion about the endogenous regressors 𝑋𝑋𝑋𝑖 ∈ ℝ𝑘, conditional on the exogenous controls 𝑊𝑊𝑊 𝑖.

Consider the one endogenous regressor 𝑘 = 1 case with the first-stage regression,

𝑋𝑖 = 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2 + 𝑣𝑖,

and test the joint null hypothesis
𝐻0 ∶ 𝜋𝜋𝜋1 = 000.

To compute the F-statistic for this hypothesis, we follow the usual procedure and use a suit-
able robust covariance matrix (e.g., HC1 or cluster-robust), with an F-statistic whose null
distribution is asymptotically 𝐹𝑚,∞.

If the statistic exceeds its critical value you reject 𝐻0 and conclude the instruments are rele-
vant.

Large-𝑛 5% critical values for 𝐹𝑚,∞ are 3.84 for 𝑚 = 1, 3.00 for 𝑚 = 2, 2.60 for 𝑚 = 3,
etc. (compute with qf(.95, m, Inf)).

Weak instruments

Relevance alone is not enough: the instruments may be weak if their correlation with 𝑋𝑖
is small. Weakness matters because two-stage least squares (2SLS) can then suffer a large
finite-sample bias toward OLS. Define the relative bias

relBias = 𝐸[ ̂𝛽𝑇 𝑆𝐿𝑆] − 𝛽
𝐸[ ̂𝛽𝑂𝐿𝑆] − 𝛽

.

Staiger and Stock (1997) and Stock and Yogo (2005) derive critical values for the homoskedastic
first-stage statistic that control the null hypothesis “relative bias > 10% of the OLS bias” at
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the 5% significance level. With one instrument the 5% cut-off is approximately 10. Hence,
the following rule of thumb is established in applied work:

First-stage 𝐹 > 10 ⇒ instruments strong
First-stage 𝐹 ≤ 10 ⇒ instruments weak

This is a quick approximation that relies on the homoskedasticity assumption and only works
well when 𝑚 is small.

For heteroskedastic (or cluster-robust) settings, Montiel Olea and Pflueger (2013) replace the
standard rule of thumb: To reject the null hypothesis of a relative bias larger than 10% at the
5% level you need a robust F-statistic that exceeds its critical value, which varies between about
11 and 23.1 depending on 𝑚 and the estimated error-covariance matrix (HC1, cluster-robust,
HAC, etc.). The conservative rule

First-stage robust 𝐹 > 23.1 ⇒ instruments strong
First-stage robust 𝐹 ≤ 23.1 ⇒ instruments weak

is therefore sufficient (but not always necessary) for any number of instruments when 𝑘 = 1.
If several regressors are endogenous (𝑘 ≥ 2), each has its own first-stage equation, and the
scalar 𝐹 no longer summarizes the joint instrument strength. An alternative is the matrix-
based Kleibergen–Paap tests of Kleibergen and Paap (2006), which extend the Staiger-Stock-
Yogo logic to the multivariate case.

Anderson-Rubin Test

To conduct inference when the first-stage is weak, the usual TSLS 𝑡-, 𝐹 - or Wald tests are
unreliable – they tend to over-reject and their confidence intervals undercover.

A simple, robust alternative is the Anderson–Rubin (AR) test. The logic is that, under
the structural model, the instruments 𝑍𝑍𝑍𝑖 should contain no information about the structural
error

𝑢𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 − 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾.

Hence, if the null hypothesis 𝐻0 ∶ 𝛽𝛽𝛽 = 𝛽𝛽𝛽0 holds, the adjusted outcome 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽0 must be un-

correlated with the instruments conditional on the controls. In practice one runs the auxiliary
regression

𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽0 = 𝑍𝑍𝑍′

𝑖𝜋𝜋𝜋 + 𝑊𝑊𝑊 ′
𝑖𝜃𝜃𝜃 + 𝑒𝑖

and computes the heteroskedastic- or cluster-robust 𝐹 -statistic, 𝐹rob, for the joint null 𝜋𝜋𝜋 = 0
(numerator d.f. = 𝑚). Reject 𝐻0 when

𝐹rob > 𝐹𝑚,∞;1−𝛼,

where 𝑚 is the number of instruments. This decision rule delivers correct size regardless of
instrument strength, but it has lower power than the TSLS-based tests when instruments are
strong.
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Repeating the test over a grid of candidate 𝛽𝛽𝛽0 values and retaining those not rejected yields
a (1 − 𝛼) Anderson–Rubin confidence region that remains valid even when the first-stage 𝐹 is
very small.

Sargan Test for Instrument Exogeneity

When the set of instruments is overidentified (𝑚 > 𝑘), we can statistically assess whether all
instruments satisfy the exogeneity condition 𝐸[𝑍𝑍𝑍𝑖𝑢𝑖] = 0.
The classical procedure is the Sargan test (also called the test of over-identifying restrictions
or the 𝐽 -test).

Null and alternative hypotheses

• 𝐻0 (all instruments are valid): every instrument is uncorrelated with the structural error
term 𝑢𝑖.

• 𝐻1 (at least one instrument is invalid): some instrument is correlated with 𝑢𝑖.

Computation of the Sargan 𝐽-statistic

1. Estimate the structural equation by TSLS (using all 𝑚 instruments) and obtain
the residuals

𝑢̂TSLS
𝑖 = 𝑌𝑖 − (𝑋𝑋𝑋′

𝑖 ̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆 + 𝑊𝑊𝑊 ′
𝑖 ̂𝛾𝛾𝛾𝑇 𝑆𝐿𝑆).

2. Regress 𝑢̂TSLS
𝑖 on the full set of instruments and exogenous controls

𝑢̂TSLS
𝑖 = 𝛿0 + 𝛿1𝑍𝑖1 + ⋯ + 𝛿𝑚𝑍𝑖𝑚 + 𝑊𝑊𝑊 ′

𝑖𝜃𝜃𝜃 + 𝑒𝑖.

3. Let 𝐹 be the (homoskedastic-only) 𝐹 -statistic for the joint null 𝛿1 = ⋯ = 𝛿𝑚 = 0. The
Sargan statistic is

𝐽 = 𝑚 ⋅ 𝐹 .

Under 𝐻0 and homoskedastic errors, 𝐽 ∼ 𝜒2
𝑚−𝑘 in large samples .

If heteroskedasticity is suspected, the Hansen robust 𝐽 -statistic should be used.
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Decision rule and interpretation

• Reject 𝐻0 if 𝐽 exceeds the critical value of the 𝜒2
𝑚−𝑘 distribution (or if the p-value is

below the chosen significance level). This implies that the data are inconsistent with the
joint exogeneity of the instruments; at least one instrument is likely invalid.

• Fail to reject 𝐻0 when 𝐽 is small. This provides no evidence against instrument validity,
but does not prove exogeneity.

Practical remarks

• The test cannot be performed when the model is exactly identified (𝑚 = 𝑘); then 𝐽 = 0
by construction and instrument validity must be argued on theoretical grounds.

• A significant 𝐽 -statistic tells us that something is wrong with the instrument set, but not
which instrument(s) are problematic. Empirical judgment and auxiliary tests (e.g. re-
estimating with different subsets of instruments) are required.

9.7.1 Wu-Hausman Test for Endogeneity

The Wu-Hausman test evaluates whether the regressors 𝑋𝑋𝑋𝑖 are in fact endogenous. That
is, it tests the null hypothesis of exogeneity, i.e.: 𝐻0 ∶ 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000.
Recall the first stage regressions

𝑋𝑖𝑗 = 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 + 𝑣𝑖𝑗, 𝑗 = 1, … , 𝑘,

and let 𝑣𝑣𝑣𝑖 = (𝑣𝑖1, … , 𝑣𝑖𝑘)′ be the stacked error terms of the first-stage regressions.

As discussed previously, 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 represents the exogenous part of 𝑋𝑖𝑗 and 𝑣𝑖𝑗 the
endogenous part. Thus, 𝑣𝑣𝑣𝑖 is the endogenous part of the full vector of endogenous regressors
𝑋𝑋𝑋𝑖. Therefore,

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000 ⇔ 𝐸[𝑣𝑣𝑣𝑖𝑢𝑖] = 000.
Consider 𝛿𝛿𝛿 = 𝐸[𝑣𝑣𝑣𝑖𝑣𝑣𝑣′

𝑖]−1𝐸[𝑣𝑣𝑣𝑖𝑢𝑖], which is the population regression coefficient of the auxiliary
regression

𝑢𝑖 = 𝑣𝑣𝑣′
𝑖𝛿𝛿𝛿 + 𝜖𝑖, 𝐸[𝑣𝑣𝑣𝑖𝜖𝑖] = 0. (9.6)

From the definition of 𝛿𝛿𝛿 we see that

𝛿𝛿𝛿 = 000 ⇔ 𝐸[𝑣𝑣𝑣𝑖𝑢𝑖] = 000.
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Therefore, testing 𝐻0 ∶ 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000 is equivalent to testing 𝛿𝛿𝛿 = 000.
Note that Equation 9.6 is an infeasible regression because 𝑢𝑖 and 𝑣𝑣𝑣𝑖 are unknown. While 𝑣𝑣𝑣𝑖
can be estimated using the residuals ̂𝑣𝑣𝑣𝑖 from the first-stage regressions, there are no suitable
sample counterparts for 𝑢𝑖 available under endogeneity.

We may insert Equation 9.6 into the structural equation given by Equation 9.1:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾 + 𝑣𝑣𝑣′
𝑖𝛿𝛿𝛿 + 𝜖𝑖. (9.7)

Equation 9.7 is a well defined regression model with regressors 𝑋𝑋𝑋𝑖,𝑊𝑊𝑊 𝑖, 𝑣𝑣𝑣𝑖 and regression error
𝜖𝑖. To see this note that

(i) 𝐸[𝑣𝑣𝑣𝑖𝜖𝑖] = 000 by Equation 9.6;
(ii) 𝐸[𝑊𝑊𝑊 𝑖𝜖𝑖] = 000 because 𝑊𝑊𝑊 𝑖 are exogenous;
(iii) 𝐸[𝑋𝑋𝑋𝑖𝜖𝑖] = 000 because 𝐸[𝑋𝑋𝑋𝑖𝜖𝑖] = 𝐸[𝑣𝑣𝑣𝑖𝜖𝑖].

Therefore, we may apply an F-test on the restriction 𝛿𝛿𝛿 = 000 in Equation 9.7 when 𝑣𝑣𝑣𝑖 is replaced
by ̂𝑣𝑣𝑣𝑖, which is known as the Wu-Hausman test.

Wu-Hausman Procedure:

1. Run the first-stage regression for each endogenous regressor 𝑋𝑖𝑗 and obtain residuals ̂𝑣𝑖𝑗,
𝑗 = 1, … , 𝑘.

2. Stack the residuals as ̂𝑣𝑣𝑣𝑖 = ( ̂𝑣𝑖1, … , ̂𝑣𝑖𝑘)′.
3. Run the augmented regression:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾 + ̂𝑣𝑣𝑣′
𝑖𝛿𝛿𝛿 + 𝜀𝑖.

4. Test 𝐻0 ∶ 𝛿𝛿𝛿 = 000 using an F-test or Wald test, which has 𝑘 restrictions.

If the test does not reject 𝐻0, then there is evidence for exogenous regressors with 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 0,
and the conventional OLS without instruments should be used because it is more efficient than
TSLS.

9.8 Example: Return of Education Revisited

Recall the previous TSLS regression with instrument mothereduc

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc, data = mroz, vcov = "HC1")
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TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.198186 0.489146 0.405167 0.6855588
fit_educ 0.049263 0.038040 1.295045 0.1960095
exper 0.044856 0.015604 2.874667 0.0042481 **
I(exper^2) -0.000922 0.000432 -2.135025 0.0333316 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.67642 Adj. R2: 0.116926
F-test (1st stage), educ: stat = 73.9 , p < 2.2e-16 , on 1 and 424 DoF.

Wu-Hausman: stat = 2.9683, p = 0.085642, on 1 and 423 DoF.

The first stage F-statistic is 73.9 indicating that the instrument is strong. The Wu-Hausman
statistic has a p-value of 0.08, which indicates that educ is significantly endogenous at the
10% level. The Sargan test is not displayed because of exact identification.

We also discussed the TSLS results with two instruments:

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 **
I(exper^2) -0.000899 0.000430 -2.090220 0.0371931 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551 Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , p < 2.2e-16 , on 2 and 423 DoF.

Wu-Hausman: stat = 2.79259 , p = 0.095441, on 1 and 423 DoF.
Sargan: stat = 0.378071, p = 0.538637, on 1 DoF.
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Similarly, the F-statistic of 55.4 indicates that the instruments are strong and the Wu-Hausman
test gives some statistical evidence of an endogeneity problem. The Sargan test does not reject,
which indicates no evidence against instrument validity (but does not prove exogeneity of the
instruments).

9.9 R-codes

metrics-sec09.R
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10 Shrinkage Estimation

library(glmnet)

Shrinkage estimation is a highly valuable technique in the context of high-dimensional regres-
sion analysis. It allows for the estimation of regression models with more regressors than
observations.

10.1 Mean squared error

The key measure of estimation accuracy is the mean squared error (MSE). The MSE of
an estimator ̂𝜃 for a parameter 𝜃 is

𝑀𝑆𝐸( ̂𝜃) = 𝐸[( ̂𝜃 − 𝜃)2].

The MSE can be decomposed into the variance plus squared bias:

𝑀𝑆𝐸( ̂𝜃) = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+ (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝐵𝑖𝑎𝑠( ̂𝜃)2

Proof. Subtracting and adding 𝐸[ ̂𝜃] gives

( ̂𝜃 − 𝜃)2 = ( ̂𝜃 − 𝐸[ ̂𝜃] + 𝐸[ ̂𝜃] − 𝜃)2

= ( ̂𝜃 − 𝐸[ ̂𝜃])2 + 2( ̂𝜃 − 𝐸[ ̂𝜃])(𝐸[ ̂𝜃] − 𝜃⏟
𝐵𝑖𝑎𝑠( ̂𝜃)

) + (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝐵𝑖𝑎𝑠( ̂𝜃)2

.

The middle term is zero after taking the expectation:

𝐸[( ̂𝜃 − 𝜃)2] = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+2 𝐸[ ̂𝜃 − 𝐸[ ̂𝜃]]⏟⏟⏟⏟⏟
=0

𝐵𝑖𝑎𝑠( ̂𝜃) + 𝐵𝑖𝑎𝑠( ̂𝜃)2.

□
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For instance, consider an i.i.d. sample 𝑋1, … , 𝑋𝑛 with population mean 𝐸[𝑋𝑖] = 𝜇 and
variance 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2. Let’s study the sample mean

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

as an estimator of 𝜇. You will find that

𝐸[ ̂𝜇] = 𝜇, 𝑉 𝑎𝑟[ ̂𝜇] = 𝜎2

𝑛 .

Proof. By the linearity of the expectation, we have

𝐸[ ̂𝜇] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋𝑖]⏟
𝜇

= 𝜇.

The independence of 𝑋1, … , 𝑋𝑛 implies

𝑉 𝑎𝑟[ ̂𝜇] = 1
𝑛2 𝑉 𝑎𝑟[

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2

𝑛

□

The sample mean is unbiased for 𝜇, i.e., 𝐵𝑖𝑎𝑠( ̂𝜇) = 𝐸[ ̂𝜇] − 𝜇 = 0. The MSE equals its
variance:

𝑀𝑆𝐸( ̂𝜇) = 𝜎2

𝑛 .

The sample mean is the best unbiased estimator for the population mean, but there exists
estimators with a lower MSE if we allow for a small bias.

10.2 A simple shrinkage estimator

Let us shrink our sample mean a bit towards 0 and define the alternative estimator

̃𝜇 = (1 − 𝑤) ̂𝜇, 𝑤 ∈ [0, 1].

Setting the shrinkage weight to 𝑤 = 0 gives ̃𝜇 = ̂𝜇 (no shrinkage) and 𝑤 = 1 gives ̃𝜇 = 0 (full
shrinkage). Our shrinkage estimator has the bias

𝐵𝑖𝑎𝑠( ̃𝜇) = 𝐸[(1 − 𝑤) ̂𝜇] − 𝜇 = (1 − 𝑤) 𝐸[ ̂𝜇]⏟
=𝜇

−𝜇 = −𝑤𝜇.
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The variance is

𝑉 𝑎𝑟[ ̃𝜇] = 𝑉 𝑎𝑟[(1 − 𝑤) ̂𝜇] = (1 − 𝑤)2𝑉 𝑎𝑟[ ̂𝜇] = (1 − 𝑤)2 𝜎2

𝑛 ,

and the MSE is

𝑀𝑆𝐸( ̃𝜇) = 𝑉 𝑎𝑟[ ̃𝜇] + 𝐵𝑖𝑎𝑠( ̃𝜇)2 = (1 − 𝑤)2 𝜎2

𝑛 + 𝑤2𝜇2.

The optimal weight in terms of the MSE is

𝑤∗ = 1
1 + 𝑛𝜇2/𝜎2

Proof. We take the derivative of 𝑚𝑠𝑒( ̃𝜇) across 𝑤 to obtain the first order condition:

−2(1 − 𝑤)𝜎2/𝑛 + 2𝑤𝜇2 = 0.

Solving for 𝑤 gives 𝑤(1 + 𝑛𝜇2/𝜎2) = 1. Then, 𝑤∗ is the global minimum because the second
derivative is 2𝜎2/𝑛 + 2𝜇2 > 0. □

For instance, if 𝜇 = 1, 𝜎2 = 1, and 𝑛 = 99, we have 𝑤∗ = 0.01.
The shrunk sample mean

̃𝜇∗ = (1 − 𝑤∗) ̂𝜇 = 𝑛𝜇2/𝜎2

1 + 𝑛𝜇2/𝜎2
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

has a lower MSE than the usual sample mean:

𝑀𝑆𝐸( ̃𝜇∗) = (1 − 𝑤∗)2 𝜎2

𝑛 + (𝑤∗)2𝜇2 < 𝜎2

𝑛 = 𝑚𝑠𝑒( ̂𝜇)

This is a remarkable result because it tells us that the sample mean is not the best we can do
in the MSE sense to estimate a population mean. The shrinked estimator is more efficient. It
is biased, but the bias vanishes asymptotically since lim𝑛→∞ 𝑤∗ = 0.
The optimal shrinkage parameter 𝑤∗ is infeasible because 𝜇2/𝜎2 is unknown. While insightful
theoretically, this result is not directly applicable in empirical work, and taking sample means
is still recommended.

However, the shrinkage principle can be very useful in the context of high-dimensional regres-
sion.
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10.3 High-dimensional regression

Least squares regression works well when the number of regressors 𝑘 is small relative to the
number of observations 𝑛. In a previous section on “too many regressors”, we discussed how
ordinary least squares (OLS) can overfit when 𝑘 is too large compared to 𝑛. Specifically, if
𝑘 = 𝑛, the OLS regression line perfectly fits the data.

Many economic applications involve categorical variables that are transformed into a large
number of dummy variables. If we include pairwise interaction terms among 𝐽 variables, we
get another ∑𝐽−1

𝑖=1 𝑖 = 𝐽(𝐽 −1)/2 regressors (for example, 190 for J=20 and 4950 for J=100).

Accounting for further nonlinearities by adding squared and cubic terms or higher-order inter-
actions can result in thousands or even millions of regressors. Many of these regressors may
provide low informational value, but it is difficult to determine a priori which are relevant and
which are irrelevant.

If 𝑘 > 𝑛, the OLS estimator is not uniquely defined because 𝑋𝑋𝑋′𝑋𝑋𝑋 does not have full rank. If
𝑘 ≈ 𝑛 the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋 can be near singular, resulting in numerically unstable OLS coefficients
or high variance.

For the vector-valued (𝑘-variate) estimator ̂𝛽𝛽𝛽𝑜𝑙𝑠 the (conditional) MSE is

𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)′( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)|𝑋𝑋𝑋]
= 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] + 𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)(𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋))′,

where, under random sampling, OLS is unbiased:

𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] − 𝛽𝛽𝛽 = 000.

Consequently, the MSE of OLS equals its variance:

𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

10.4 Ridge Regression

To avoid that (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 becomes very large or undefined for large 𝑘, we can introduce a shrink-
age parameter 𝜆 and define the ridge regression estimator

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝑌𝑌𝑌 . (10.1)

This estimator is well defined and does not suffer from multicollinearity problems, even if
𝑘 > 𝑛. The inverse (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1 exists as long as 𝜆 > 0. For 𝜆 = 0, the ridge estimator
coincides with the OLS estimator.
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While the OLS estimator is motivated from the minimization problem

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽),

the ridge estimator is the minimizer of

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽. (10.2)

The minimization problem introduces a penalty for large values of 𝛽𝛽𝛽. The solution is then
shrunk towards zero by 𝜆 > 0.

10.5 Standardization

It is common practice to standardize the regressors in ridge regression:

𝑋𝑖𝑗 = 𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗

√ 1
𝑛−1 ∑𝑛

𝑖=1(𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗)2
, 𝑋𝑋𝑋𝑗 = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑗

Without standardization, variables with larger scales (i.e., larger variances) will disproportion-
ately influence the penalty term through 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽 = 𝜆 ∑𝑘

𝑗=1 𝛽2
𝑗 . Variables with smaller variance

may be under-penalized, while those with larger variance may be over-penalized.

Standardization ensures that each variable contributes equally to the penalty term, making
the penalty independent of the scale of the variables.

Standardizing makes the coefficient estimates more interpretable, as they will all be on the
same scale, which helps in understanding the relative importance of each variable.

10.6 Ridge Properties

The bias of the ridge estimator is

𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) = −𝜆(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝛽𝛽𝛽,
and the covariance matrix is

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1.
In the homoskedastic linear regression model, we have

𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) < 𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)
if 0 < 𝜆 < 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽.
Similarly to the sample mean case, the upper bound 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽 does not give practical guidance
for selecting 𝜆 because 𝛽𝛽𝛽 and 𝜎2 are unknown.
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10.7 Mean squared prediction error

The optimal value for 𝜆 minimizes the MSE, but estimating the MSE of the ridge estimator
is not straightforward because it depends on the parameter 𝛽𝛽𝛽 being estimated. Instead, it is
better to focus on the out-of-sample mean squared prediction error (MSPE).

Let (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛) be our data set (in-sample observations) with ridge estimator Equa-
tion 10.1, and let (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) be another observation pair (out-of-sample observation) that is
independently drawn from the same population as (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛).
The mean squared prediction error (MSPE) is

𝑀𝑆𝑃𝐸( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒) = 𝐸[(𝑌 𝑜𝑜𝑠 − (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒)2].

Note that (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) is independent of ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 because it has not been used for estimation.
𝑌 (𝑋𝑋𝑋𝑜𝑜𝑠) = (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 is the predicted value of 𝑌 𝑜𝑜𝑠.

To estimate the MSPE, we can use a split sample.

1) We divide our observations randomly into a training sample (in-sample) of size 𝑛𝑡𝑟𝑎𝑖𝑛
and a testing sample (out-of-sample) of size 𝑛𝑡𝑒𝑠𝑡 with 𝑛 = 𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡:

(𝑌 𝑖𝑛𝑠
1 ,𝑋𝑋𝑋𝑖𝑛𝑠

1 ), … (𝑌 𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

,𝑋𝑋𝑋𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

), (𝑌 𝑜𝑜𝑠
1 ,𝑋𝑋𝑋𝑜𝑜𝑠

1 ), … (𝑌 𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

,𝑋𝑋𝑋𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

)

2) We estimate 𝛽𝛽𝛽 using the training sample:

̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒 = (

𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 (𝑋𝑋𝑋𝑖𝑛𝑠

𝑖 )′ + 𝜆𝐼𝐼𝐼𝑘)
−1 𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 𝑌 𝑖𝑛𝑠

𝑖 .

3) We evaluate the empirical MSPE using the testing sample,

𝑀𝑆𝑃𝐸𝑠𝑝𝑙𝑖𝑡 = 1
𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑒𝑠𝑡

∑
𝑖=1

(𝑌 𝑜𝑜𝑠
𝑖 − (𝑋𝑋𝑋𝑜𝑜𝑠

𝑖 )′ ̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒)

2
(10.3)

Steps 2 and 3 are repeated for different values for 𝜆. We select the value for 𝜆 that gives the
smallest estimated MSPE.
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10.8 Cross validation

A problem with the split sample estimator is that it highly depends on the choice of the two
subsamples. An alternative is to select 𝑚 subsamples (folds) and evaluate the MSPE using
each fold separately:

m-fold cross validation

1) Divide the sample into 𝑗 = 1, … , 𝑚 randomly chosen folds/subsamples of approximately
equal size:

(𝑌 (1)
1 ,𝑋𝑋𝑋(1)

1 ), … , (𝑌 (1)
𝑛1 ,𝑋𝑋𝑋(1)

𝑛1 )
(𝑌 (2)

1 ,𝑋𝑋𝑋(2)
1 ), … , (𝑌 (2)

𝑛2 ,𝑋𝑋𝑋(2)
𝑛2 )

⋮
(𝑌 (𝑚)

1 ,𝑋𝑋𝑋(𝑚)
1 ), … , (𝑌 (𝑚)

𝑛𝑚 ,𝑋𝑋𝑋(𝑚)
𝑛𝑚 )

2) Select 𝑗 ∈ {1, … , 𝑚} as left-out test sample and use the other subsamples to compute
the ridge estimator ̂𝛽𝛽𝛽

(−𝑗)
𝑟𝑖𝑑𝑔𝑒, where the 𝑗-th fold is not used.

3) Compute Equation 10.3 using the j-th folds as a test sample, i.e.,

𝑀𝑆𝑃𝐸𝑗 = 1
𝑛𝑗

𝑛𝑗

∑
𝑖=1

(𝑌 (𝑗)
𝑖 − (𝑋𝑋𝑋(𝑗)

𝑖 )′ ̂𝛽𝛽𝛽
(−𝑗)
𝑟𝑖𝑑𝑔𝑒)

2

4) The m-fold cross validation estimator is the weighted average over the m subsample
estimates of the MSPE:

𝑀𝑆𝑃𝐸𝑚𝑓𝑜𝑙𝑑 =
𝑚

∑
𝑗=1

𝑛𝑗
𝑛 𝑀𝑆𝑃𝐸𝑗,

where 𝑛 = ∑𝑚
𝑗=1 𝑛𝑗 is the total number of observations.

5) Repeat these steps over a grid of tuning parameters for 𝜆, and select the value for 𝜆 that
minimizes 𝑀𝑆𝑃 𝐸𝑚𝑓𝑜𝑙𝑑.

Common values for 𝑚 are 𝑚 = 5 and 𝑚 = 10. The larger m, the less biased the estimation of
the MSPE is, but also the more computationally expensive the cross validation becomes.

The largest possible value for m is 𝑚 = 𝑛, where each observation represents a fold. This
is also known as leave-one-out cross validation (LOOCV). LOOCV might be useful for small
datasets but is often infeasible for large dataset because of the large computation time.
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10.9 L2 Regularization: Ridge

The ℓ𝑝-norm of a vector 𝑎𝑎𝑎 = (𝑎1, … , 𝑎𝑘)′ is defined as

‖𝑎𝑎𝑎‖𝑝 = (
𝑘

∑
𝑗=1

|𝑎𝑗|𝑝)
1/𝑝

.

Important special cases are the ℓ1-norm and ℓ2-norm:

‖𝑎𝑎𝑎‖1 =
𝑘

∑
𝑗=1

|𝑎𝑗|, ‖𝑎𝑎𝑎‖2 = (
𝑘

∑
𝑗=1

𝑎2
𝑗)

1/2
=

√
𝑎𝑎𝑎′𝑎𝑎𝑎.

The ℓ1-norm is the sum of absolute values, and the ℓ2-norm, also known as the Euclidean
norm, represents the length of the vector in the Euclidean space.

Ridge regression is also called L2 regularization because it penalizes the sum of squared
errors by the square of the ℓ2-norm of the coefficient vector, ‖𝛽𝛽𝛽‖2

2 = 𝛽𝛽𝛽′𝛽𝛽𝛽. Ridge is the solution
to the minimization problem Equation 10.2, which can be written as

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖2
2.

10.10 L1 Regularization: Lasso

An alternative approach is L1 regularization, also known as lasso. The lasso estimator is
defined as

̂𝛽𝛽𝛽𝑙𝑎𝑠𝑠𝑜 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖1,

where ‖𝛽𝛽𝛽‖1 = ∑𝑘
𝑗=1 |𝛽𝑗|.

The elastic net estimator is a hybrid method. It combines L1 and L2 regularization using a
weight 0 ≤ 𝛼 ≤ 1:

̂𝛽𝛽𝛽𝑛𝑒𝑡,𝛼 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆(𝛼‖𝛽𝛽𝛽‖1 + (1 − 𝛼)‖𝛽𝛽𝛽‖2
2).

This includes ridge (𝛼 = 0) and lasso (𝛼 = 1) as special cases.

Ridge has a closed form solution given by Equation 10.1. Lasso and elastic net with 𝛼 >
0 require numerical solutions by means of quadratic programming. The solution typically
involves some zero coefficients.
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10.11 Implementation in R

Let’s consider the mtcars dataset, which is available in base R. Have a look at ?mtcars to see
the data description.

We estimate a ridge regression model to predict the variable mpg (miles per gallon) using the
other variables. We consider the values 𝜆 = 0.5 and 𝜆 = 2.5.
Ridge, lasso, and elastic net are implemented in the glmnet package. The glmnet() function
requires matrix-valued data as input. The model.matrix() command is useful because it
produces the regressor matrix 𝑋𝑋𝑋 and converts categorical variables into dummy variables.

Y = mtcars$mpg
X = model.matrix(mpg ~., data = mtcars)[,-1]
## Number of observations n and regressors k:
dim(X)

[1] 32 10

fit.ridge1 = glmnet(x=X, y=Y, alpha=0, lambda = 0.5)
fit.ridge2 = glmnet(x=X, y=Y, alpha=0, lambda = 2.5)
fits = cbind(coef(fit.ridge1), coef(fit.ridge2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")
fits

11 x 2 sparse Matrix of class "dgCMatrix"
lambda=0.5 lambda=2.5

(Intercept) 19.420400249 21.179818696
cyl -0.250698757 -0.368541841
disp -0.001893223 -0.005184086
hp -0.013079878 -0.011710951
drat 0.978514241 1.052837310
wt -1.902328296 -1.264016952
qsec 0.316107066 0.164790158
vs 0.472551434 0.755205256
am 2.113922488 1.655241565
gear 0.631836101 0.546732963
carb -0.661215998 -0.560023425

By default the regressors are standardized. Therefore the coefficients represent the marginal
effects as the change in the response variable for a one standard deviation change in the
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regressor. For instance, with 𝜆 = 0.5, the coefficient of wt (weight) is -1.9, which means that
a one standard deviation increase in weight leads to a decrease of 1.9 miles per gallon.

When we exclude the intercept, the average coefficient size (with respect to the ℓ2 norm)
becomes small for larger values of 𝜆:

c(
sqrt(sum(coef(fit.ridge1)[-1]^2)),
sqrt(sum(coef(fit.ridge2)[-1]^2))

)

[1] 3.204323 2.606156

The lasso estimator (𝛼 = 1) sets many coefficients equal to zero:

fit.lasso1 = glmnet(x=X, y=Y, alpha=1, lambda = 0.5)
fit.lasso2 = glmnet(x=X, y=Y, alpha=1, lambda = 2.5)
fits = cbind(coef(fit.lasso1), coef(fit.lasso2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")
fits

11 x 2 sparse Matrix of class "dgCMatrix"
lambda=0.5 lambda=2.5

(Intercept) 35.88689755 30.0625817
cyl -0.85565434 -0.7090799
disp . .
hp -0.01411517 .
drat 0.07603453 .
wt -2.67338139 -1.7358069
qsec . .
vs . .
am 0.48651385 .
gear . .
carb -0.10722338 .

The cv.glmnet() command estimates the optimal shrinkage parameter using 10-fold cross
validation:

set.seed(123) ## for reproducibility
cv.glmnet(x=X, y=Y, alpha = 0)$lambda.min
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[1] 2.746789

cv.glmnet(x=X, y=Y, alpha = 1)$lambda.min

[1] 0.8007036

We can use ridge and lasso to estimate linear models with more variables than observations.
The command ^2 includes all pairwise interaction terms, which produces 55 variables in total.
The dataset has 𝑛 = 32 observations.

X.large = model.matrix(mpg ~. ^2, data = mtcars)[,-1]
dim(X.large) # more regressors than observations

[1] 32 55

fit.ridgelarge = glmnet(x=X.large, y=Y, alpha=0, lambda = 0.5)
fit.lassolarge = glmnet(x=X.large, y=Y, alpha=1, lambda = 0.5)
fits = cbind(
coef(fit.ridgelarge), coef(fit.lassolarge)

)
colnames(fits) = c("ridge", "lasso")
fits

56 x 2 sparse Matrix of class "dgCMatrix"
ridge lasso

(Intercept) 1.315259e+01 23.655330629
cyl -4.061218e-02 -0.036308043
disp -8.137358e-04 .
hp -5.588290e-03 .
drat 4.386174e-01 .
wt -5.547986e-01 -1.301739306
qsec 2.308772e-01 .
vs 6.705889e-01 .
am 4.379822e-01 .
gear 8.788479e-01 .
carb -1.537294e-01 .
cyl:disp 6.830897e-05 .
cyl:hp 1.351742e-04 .
cyl:drat 2.455464e-02 .
cyl:wt -2.621868e-03 .
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cyl:qsec 3.358094e-03 .
cyl:vs 1.591177e-01 .
cyl:am 6.102385e-02 .
cyl:gear 3.481957e-02 .
cyl:carb 7.499023e-04 .
disp:hp 8.592521e-06 .
disp:drat -9.421536e-05 .
disp:wt 2.191122e-04 .
disp:qsec -1.789464e-05 .
disp:vs -1.280463e-03 .
disp:am -9.043597e-03 .
disp:gear -3.601317e-04 .
disp:carb -1.255358e-04 .
hp:drat -2.086003e-03 .
hp:wt 4.404097e-04 .
hp:qsec -4.347470e-04 -0.001328046
hp:vs -1.858343e-02 .
hp:am -2.604620e-03 .
hp:gear -3.464491e-04 .
hp:carb 9.107116e-04 .
drat:wt -1.766081e-01 -0.337667877
drat:qsec 3.828881e-02 0.073725291
drat:vs 1.123963e-01 .
drat:am 5.047132e-02 .
drat:gear 8.294201e-02 .
drat:carb -4.770358e-02 .
wt:qsec -3.289204e-02 .
wt:vs -3.239643e-01 .
wt:am -4.197733e-01 .
wt:gear -1.890703e-01 .
wt:carb -1.497574e-02 .
qsec:vs 3.114409e-02 .
qsec:am 5.199239e-02 .
qsec:gear 7.035311e-02 0.041623415
qsec:carb -1.859676e-02 .
vs:am 8.688134e-01 2.429571498
vs:gear 3.311330e-01 .
vs:carb -2.768199e-01 .
am:gear 1.462749e-01 .
am:carb 1.588431e-01 .
gear:carb 8.165764e-03 .

To get the fitted values you may use the predict() command:
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Yhatridge = predict(fit.ridgelarge, newx = X.large)
Yhatlasso = predict(fit.lassolarge, newx = X.large)
Yhats = cbind(Y, Yhatridge, Yhatlasso)
colnames(Yhats) = c("Y", "Yhat-ridge", "Yhat-lasso")
Yhats

Y Yhat-ridge Yhat-lasso
Mazda RX4 21.0 20.94312 21.64528
Mazda RX4 Wag 21.0 20.47797 21.14997
Datsun 710 22.8 26.12112 25.98585
Hornet 4 Drive 21.4 19.57785 19.91064
Hornet Sportabout 18.7 17.25059 17.35026
Valiant 18.1 19.25815 19.52858
Duster 360 14.3 14.80168 15.42082
Merc 240D 24.4 23.06386 22.50685
Merc 230 22.8 23.69586 22.78181
Merc 280 19.2 18.47341 19.75241
Merc 280C 17.8 18.75521 19.92770
Merc 450SE 16.4 15.39830 15.79922
Merc 450SL 17.3 16.19856 16.61670
Merc 450SLC 15.2 16.21931 16.54465
Cadillac Fleetwood 10.4 12.25717 12.57063
Lincoln Continental 10.4 11.74625 11.88810
Chrysler Imperial 14.7 11.64161 11.58002
Fiat 128 32.4 28.79845 27.43656
Honda Civic 30.4 31.07410 29.68475
Toyota Corolla 33.9 30.63399 28.72288
Toyota Corona 21.5 22.35048 22.60097
Dodge Challenger 15.5 17.17402 17.68091
AMC Javelin 15.2 17.70056 17.97138
Camaro Z28 13.3 14.14050 14.67766
Pontiac Firebird 19.2 16.37763 16.39890
Fiat X1-9 27.3 29.32240 27.93021
Porsche 914-2 26.0 26.15812 24.43481
Lotus Europa 30.4 28.93150 27.72235
Ford Pantera L 15.8 16.69717 17.16642
Ferrari Dino 19.7 20.27929 20.20595
Maserati Bora 15.0 14.07394 14.80373
Volvo 142E 21.4 23.30782 24.50302
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10.12 R-codes

metrics-sec10.R
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11 Principal Components

If two regressors are highly correlated, we can typically drop one of the regressors because it
mostly contains the same information.

The idea of principal component regression is to exploit the correlations among the regressors
to reduce their number while retaining as much of the original information as possible.

11.1 Principal Components

The principal components (PC) are linear combinations of the regressor variables that capture
as much of the variation in the original variables as possible.

Principal Components

Let 𝑋𝑋𝑋𝑖 be a 𝑘-variate vector of regressor variables.

The first principal component is 𝑃𝑖1 = 𝑤𝑤𝑤′
1𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤1 satisfies

𝑤𝑤𝑤1 = argmax𝑤𝑤𝑤′𝑤𝑤𝑤=1 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

The second principal component is 𝑃𝑖2 = 𝑤𝑤𝑤′
2𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤2 satisfies

𝑤𝑤𝑤2 = argmax𝑤𝑤𝑤′𝑤𝑤𝑤=1
𝑤𝑤𝑤′𝑤𝑤𝑤1=0

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

The 𝑙-th principal component is 𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤𝑙 satisfies

𝑤𝑤𝑤𝑙 = argmax 𝑤𝑤𝑤′𝑤𝑤𝑤=1
𝑤𝑤𝑤′𝑤𝑤𝑤1=…=𝑤𝑤𝑤′𝑤𝑤𝑤𝑙−1=0

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

A 𝑘-variate regressor vector 𝑋𝑋𝑋𝑖 has 𝑘 principal components 𝑃𝑖1, … , 𝑃𝑖𝑘 and 𝑘 corresponding
weights or principal component loadings 𝑤𝑤𝑤1,𝑤𝑤𝑤2, … ,𝑤𝑤𝑤𝑘.

By definition, the principal components are descendingly ordered by their variance:

𝑉 𝑎𝑟[𝑃𝑖1] ≥ 𝑉 𝑎𝑟[𝑃𝑖2] ≥ … ≥ 𝑉 𝑎𝑟[𝑃𝑖𝑘] ≥ 0

The principal component weights are orthonormal:

𝑤𝑤𝑤′
𝑖𝑤𝑤𝑤𝑗 = {1 if 𝑖 = 𝑗,

0 if 𝑖 ≠ 𝑗.
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Moreover, 𝑤𝑤𝑤1,𝑤𝑤𝑤2, … ,𝑤𝑤𝑤𝑘 form an orthonormal basis for the 𝑘-dimensional vector space ℝ𝑘. The
regressor vector admits the following decomposition into its principal components:

𝑋𝑋𝑋𝑖 =
𝑘

∑
𝑙=1

𝑃𝑖𝑙𝑤𝑤𝑤𝑙 (11.1)

The decomposition of a dataset into its principal components is called principal component
analysis (PCA).

11.2 Analytical PCA Solution

In this subsection, we will use some matrix calculus and eigenvalue theory. To recap the
relevant matrix algebra, the following resources will be useful:

• Eigenvalues and Eigenvectors: https://matrix.svenotto.com/04_furtherconcepts.html
• Derivative rules for vectors: https://matrix.svenotto.com/05_calculus.html

The maximization problem for the first principal component is

max
𝑤𝑤𝑤

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] subject to 𝑤𝑤𝑤′𝑤𝑤𝑤 = 1. (11.2)

The variance of interest can be rewritten as

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝐸[(𝑤𝑤𝑤′(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖]))2]
= 𝐸[(𝑤𝑤𝑤′(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖]))((𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′𝑤𝑤𝑤)]
= 𝑤𝑤𝑤′𝐸[(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′]𝑤𝑤𝑤
= 𝑤𝑤𝑤′Σ𝑤𝑤𝑤

where Σ = 𝑉 𝑎𝑟[𝑋𝑋𝑋𝑖] is the population covariance matrix of 𝑋𝑋𝑋𝑖. Thus, the constrained maxi-
mization problem Equation 11.2 has the Lagrangian

ℒ(𝑤𝑤𝑤, 𝜆) = 𝑤𝑤𝑤′Σ𝑤𝑤𝑤 − 𝜆(𝑤𝑤𝑤′𝑤𝑤𝑤 − 1),

where 𝜆 is a Lagrange multiplier.

Recall the derivative rules for vectors: If 𝐴𝐴𝐴 is a symmetric matrix, then the derivative of 𝑎𝑎𝑎′𝐴𝐴𝐴𝑎𝑎𝑎
with respect to 𝑎𝑎𝑎 is 2𝐴𝐴𝐴𝑎𝑎𝑎. Therefore, the first order condition with respect to 𝑤𝑤𝑤 is

Σ𝑤𝑤𝑤 = 𝜆𝑤𝑤𝑤. (11.3)

The pair (𝜆,𝑤𝑤𝑤) must satisfy the eigenequation Equation 11.3, which is precisely the eigenequa-
tion which defines an eigenvalue-eigenvector pair. The Lagrange multiplier 𝜆 must be an
eigenvalue of Σ and the weight vector 𝑤𝑤𝑤 must be a corresponding eigenvector.
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By the first order condition with respect to 𝜆,

𝑤𝑤𝑤′𝑤𝑤𝑤 = 1,

the eigenvector is normalized to length 1.

Therefore, the variance of interest is

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝑤𝑤𝑤′Σ𝑤𝑤𝑤 = 𝑤𝑤𝑤′(𝜆𝑤𝑤𝑤) = 𝜆. (11.4)

Consequently, 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] must be an eigenvalue of Σ and 𝑤𝑤𝑤 is a corresponding normalized
eigenvector.

The expression 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝜆 is maximized if we use the largest eigenvalue 𝜆 = 𝜆1. Conse-
quently, the variance of the first principal component 𝑃𝑖1 is equal to the largest eigenvalue 𝜆1
of Σ, and the first principal component weight 𝑤𝑤𝑤1 is a normalized eigenvector corresponding
to the eigenvalue 𝜆1.

Analogously, the second principal component weight 𝑤𝑤𝑤2 must also be a normalized eigenvector
of Σ with the additional restriction that it is orthogonal to 𝑤𝑤𝑤1. Therefore, it cannot be an
eigenvector corresponding to the first eigenvalue, and we use the second largest eigenvalue
𝜆 = 𝜆2 to maximize Equation 11.4.

The variance of the second principal component 𝑃𝑖2 is equal to the second largest eigenvalue
𝜆2 of Σ, and the second principal component weight 𝑤𝑤𝑤2 is a corresponding normalized eigen-
vector.

To continue this pattern, the variance of the 𝑙-th principal component 𝑃𝑖𝑙 is equal to the 𝑙-th
largest eigenvalue 𝜆𝑙 of Σ, and the 𝑙-th principal component weight 𝑤𝑤𝑤𝑙 is a corresponding
normalized eigenvector.

Principal Components Solution

Let Σ be the covariance matrix of the 𝑘-variate vector of regressor variables 𝑋𝑋𝑋𝑖, let 𝜆1 ≥
𝜆2 ≥ … ≥ 𝜆𝑘 ≥ 0 be the eigenvalues ordered in descending order of Σ, and let 𝑣𝑣𝑣1, … ,𝑣𝑣𝑣𝑘 be
corresponding orthonormal eigenvectors.

• The principal component weights are 𝑤𝑤𝑤𝑙 = 𝑣𝑣𝑣𝑙 for 𝑙 = 1, … , 𝑘
• The principal components are 𝑃𝑖𝑙 = 𝑣𝑣𝑣′

𝑙𝑋𝑋𝑋𝑖, and they have the properties

𝑉 𝑎𝑟[𝑃𝑖𝑙] = 𝜆𝑙, 𝐶𝑜𝑣(𝑃𝑖𝑙, 𝑃𝑖𝑚) = 0, 𝑙 ≠ 𝑚.

Principal components are uncorrelated because

𝐶𝑜𝑣(𝑃𝑖𝑚, 𝑃𝑖𝑙) = 𝐸[𝑤𝑤𝑤′
𝑚(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′𝑤𝑤𝑤𝑙]

= 𝑤𝑤𝑤′
𝑚Σ𝑤𝑤𝑤𝑙 = 𝜆𝑚𝑤𝑤𝑤′

𝑚𝑤𝑤𝑤𝑙,

where 𝑤𝑤𝑤′
𝑚𝑤𝑤𝑤𝑙 = 1 if 𝑚 = 𝑙 and 𝑤𝑤𝑤′

𝑚𝑤𝑤𝑤𝑙 = 0 if 𝑚 ≠ 𝑙
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11.3 Sample principal components

The covariance matrix Σ = 𝑉 𝑎𝑟[𝑋𝑋𝑋𝑖] is unknown in practice. Instead, we estimate it from the
sample 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛:

Σ̂ΣΣ = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′.

Let 𝜆̂1 ≥ 𝜆̂2 ≥ … , 𝜆̂𝑘 ≥ 0 be the eigenvalues of Σ̂ΣΣ and let ̂𝑣𝑣𝑣1, … , ̂𝑣𝑣𝑣𝑘 be corresponding orthonor-
mal eigenvectors. Then,

• The 𝑙-th sample principal component for observation 𝑖 is

𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖

• The 𝑙-th sample principal component weight vector is

𝑤𝑤𝑤𝑙 = ̂𝑣𝑣𝑣𝑙

• The (adjusted) sample variance of the 𝑙-th sample principal components series 𝑃1𝑙, … , 𝑃𝑛𝑙
is 𝜆̂𝑙, and the sample covariances of different principal components series are zero.

11.4 PCA in R

Let’s compute the sample principal components of the mtcars dataset:

pca = prcomp(mtcars)
## the principal components are arranged by columns
## first few rows of principal components:
pca$x |> head()

PC1 PC2 PC3 PC4 PC5
Mazda RX4 -79.596425 2.132241 -2.153336 -2.7073437 -0.7023522
Mazda RX4 Wag -79.598570 2.147487 -2.215124 -2.1782888 -0.8843859
Datsun 710 -133.894096 -5.057570 -2.137950 0.3460330 1.1061111
Hornet 4 Drive 8.516559 44.985630 1.233763 0.8273631 0.4240145
Hornet Sportabout 128.686342 30.817402 3.343421 -0.5211000 0.7365801
Valiant -23.220146 35.106518 -3.259562 1.4005360 0.8029768

PC6 PC7 PC8 PC9 PC10
Mazda RX4 -0.31486106 -0.098695018 0.07789812 -0.2000092 -0.29008191
Mazda RX4 Wag -0.45343873 -0.003554594 0.09566630 -0.3533243 -0.19283553
Datsun 710 1.17298584 0.005755581 -0.13624782 -0.1976423 0.07634353
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Hornet 4 Drive -0.05789705 -0.024307168 -0.22120800 0.3559844 -0.09057039
Hornet Sportabout -0.33290957 0.106304777 0.05301719 0.1532714 -0.18862217
Valiant -0.08837864 0.238946304 -0.42390551 0.1012944 -0.03769010

PC11
Mazda RX4 -0.1057706
Mazda RX4 Wag -0.1069047
Datsun 710 -0.2668713
Hornet 4 Drive -0.2088354
Hornet Sportabout 0.1092563
Valiant -0.2757693

## the principal components weights
pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5
mpg -0.038118199 0.009184847 0.98207085 0.047634784 -0.08832843
cyl 0.012035150 -0.003372487 -0.06348394 -0.227991962 0.23872590
disp 0.899568146 0.435372320 0.03144266 -0.005086826 -0.01073597
hp 0.434784387 -0.899307303 0.02509305 0.035715638 0.01655194
drat -0.002660077 -0.003900205 0.03972493 -0.057129357 -0.13332765
wt 0.006239405 0.004861023 -0.08491026 0.127962867 -0.24354296

PC6 PC7 PC8 PC9 PC10
mpg -0.143790084 -0.039239174 -2.271040e-02 -0.002790139 0.030630361
cyl -0.793818050 0.425011021 1.890403e-01 0.042677206 0.131718534
disp 0.007424138 0.000582398 5.841464e-04 0.003532713 -0.005399132
hp 0.001653685 -0.002212538 -4.748087e-06 -0.003734085 0.001862554
drat 0.227229260 0.034847411 9.385817e-01 -0.014131110 0.184102094
wt -0.127142296 -0.186558915 -1.561907e-01 -0.390600261 0.829886844

PC11
mpg 0.0158569365
cyl -0.1454453628
disp -0.0009420262
hp 0.0021526102
drat 0.0973818815
wt 0.0198581635

## the standard deviations of the principal components
## are the square roots of the sample eigenvalues
pca$sdev

[1] 136.5330479 38.1480776 3.0710166 1.3066508 0.9064862 0.6635411
[7] 0.3085791 0.2859604 0.2506973 0.2106519 0.1984238
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Principal components are sensitive to the scaling of the data. Consequently, it is recommended
to first scale each variable in the dataset to have mean zero and unit variance: scale(mtcars).
In this case, Σ is the correlation matrix.

pca = mtcars |> scale() |> prcomp()
pca$x |> head()

PC1 PC2 PC3 PC4 PC5
Mazda RX4 -0.64686274 1.7081142 -0.5917309 0.11370221 0.9455234
Mazda RX4 Wag -0.61948315 1.5256219 -0.3763013 0.19912121 1.0166807
Datsun 710 -2.73562427 -0.1441501 -0.2374391 -0.24521545 -0.3987623
Hornet 4 Drive -0.30686063 -2.3258038 -0.1336213 -0.50380035 -0.5492089
Hornet Sportabout 1.94339268 -0.7425211 -1.1165366 0.07446196 -0.2075157
Valiant -0.05525342 -2.7421229 0.1612456 -0.97516743 -0.2116654

PC6 PC7 PC8 PC9 PC10
Mazda RX4 -0.01698737 -0.42648652 0.009631217 -0.14642303 0.06670350
Mazda RX4 Wag -0.24172464 -0.41620046 0.084520213 -0.07452829 0.12692766
Datsun 710 -0.34876781 -0.60884146 -0.585255765 0.13122859 -0.04573787
Hornet 4 Drive 0.01929700 -0.04036075 0.049583029 -0.22021812 0.06039981
Hornet Sportabout 0.14919276 0.38350816 0.160297757 0.02117623 0.05983003
Valiant -0.24383585 -0.29464160 -0.256612420 0.03222907 0.20165466

PC11
Mazda RX4 0.17969357
Mazda RX4 Wag 0.08864426
Datsun 710 -0.09463291
Hornet 4 Drive 0.14761127
Hornet Sportabout 0.14640690
Valiant 0.01954506

pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5 PC6
mpg -0.3625305 0.01612440 -0.22574419 -0.022540255 -0.10284468 -0.10879743
cyl 0.3739160 0.04374371 -0.17531118 -0.002591838 -0.05848381 0.16855369
disp 0.3681852 -0.04932413 -0.06148414 0.256607885 -0.39399530 -0.33616451
hp 0.3300569 0.24878402 0.14001476 -0.067676157 -0.54004744 0.07143563
drat -0.2941514 0.27469408 0.16118879 0.854828743 -0.07732727 0.24449705
wt 0.3461033 -0.14303825 0.34181851 0.245899314 0.07502912 -0.46493964

PC7 PC8 PC9 PC10 PC11
mpg 0.367723810 0.754091423 -0.23570162 -0.13928524 -0.12489563
cyl 0.057277736 0.230824925 -0.05403527 0.84641949 -0.14069544
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disp 0.214303077 -0.001142134 -0.19842785 -0.04937979 0.66060648
hp -0.001495989 0.222358441 0.57583007 -0.24782351 -0.25649206
drat 0.021119857 -0.032193501 0.04690123 0.10149369 -0.03953025
wt -0.020668302 0.008571929 -0.35949825 -0.09439426 -0.56744870

pca$sdev

[1] 2.5706809 1.6280258 0.7919579 0.5192277 0.4727061 0.4599958 0.3677798
[8] 0.3505730 0.2775728 0.2281128 0.1484736

11.5 Variance of principal components

Since the sample principal components are uncorrelated, the total variation in the data is

𝑉 𝑎𝑟[
𝑘

∑
𝑚=1

𝑃𝑖𝑚] =
𝑘

∑
𝑚=1

𝑉 𝑎𝑟[𝑃𝑖𝑚] =
𝑘

∑
𝑚=1

𝜆̂𝑙.

The proportion of variance explained by the 𝑙-th principal component is

𝑉 𝑎𝑟[𝑃𝑖𝑙]
𝑉 𝑎𝑟[∑𝑘

𝑚=1 𝑃𝑖𝑚]
= 𝜆̂𝑙

∑𝑘
𝑚=1 𝜆̂𝑚

A scree plot is useful to see how much each principal component contributes to the total
variation:

pcvar = pca$sdev^2
varexpl = pcvar/sum(pcvar)
varexpl

[1] 0.600763659 0.240951627 0.057017934 0.024508858 0.020313737 0.019236011
[7] 0.012296544 0.011172858 0.007004241 0.004730495 0.002004037

plot(varexpl)
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cumsum(varexpl)

[1] 0.6007637 0.8417153 0.8987332 0.9232421 0.9435558 0.9627918 0.9750884
[8] 0.9862612 0.9932655 0.9979960 1.0000000

The first principal component explains more than 60% of the variation, the first four explain
more than 90% of the variation, the first 6 more than 95%, and the first 9 principal components
more than 99% of the variation.

11.6 Linear regression with principal components

Principal components can be used to estimate the high-dimensional (large 𝑘) linear regression
model

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛.

While ridge and lasso shrink coefficients to prevent overfitting, PCA reduces dimensionality
by transforming variables into orthogonal components before estimation.

Since the principal component weights 𝑤𝑤𝑤1, … ,𝑤𝑤𝑤𝑘 form a basis of ℝ𝑘, the regressors have the
basis representation given by Equation 11.1. Similarly, we can represent the coefficient vector
in terms of the principal component basis:

𝛽𝛽𝛽 =
𝑘

∑
𝑙=1

𝜃𝑙𝑤𝑤𝑤𝑙, 𝜃𝑙 = 𝑤𝑤𝑤′
𝑙𝛽𝛽𝛽. (11.5)
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Inserting in the regression function gives

𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 =

𝑘
∑
𝑙=1

𝑋𝑋𝑋′
𝑖𝑤𝑤𝑤𝑙⏟

=𝑃𝑖𝑙

𝜃𝑙,

and the regression equation becomes

𝑌𝑖 =
𝑘

∑
𝑙=1

𝑃𝑖𝑙𝜃𝑙 + 𝑢𝑖. (11.6)

This regression equation is convenient because the regressors 𝑃𝑖𝑙 are uncorrelated, and OLS
estimates for 𝜃𝑙 can be inserted back into Equation 11.5 to get an estimate for 𝛽𝛽𝛽.
When 𝑘 is large, this approach is still prone to overfitting. The 𝑘 principal components of 𝑋𝑋𝑋𝑖
explain 100% of its variance, but it may be reasonable to select a smaller number of principal
components 𝑝 < 𝑘 that explain 95% or 99% of the variance.

The remaining 𝑘 − 𝑝 principal components explain only 5% or 1% of the variance. The idea
is that we truncate the model by assuming that the remaining principal components contain
only noise that is uncorrelated with 𝑌𝑖.

Assumption (PC): 𝐸[𝑃𝑖𝑚𝑌𝑖] = 0 for all 𝑚 = 𝑝 + 1, … , 𝑘.
This assumption implies that the components with indices larger than 𝑝 contribute no system-
atic predictive power for 𝑌𝑖, and hence only introduce noise.

Because the principal components are uncorrelated, we have 𝜃𝑙 = 𝐸[𝑌𝑖𝑃𝑖𝑙]/𝐸[𝑃 2
𝑖𝑙], and, there-

fore 𝜃𝑚 = 0 for 𝑚 = 𝑝 + 1, … , 𝑘. Consequently,

𝛽𝛽𝛽 =
𝑝

∑
𝑙=1

𝜃𝑙𝑤𝑤𝑤𝑙, (11.7)

and Equation 11.6 becomes a factor model with 𝑝 factors:

𝑌𝑖 =
𝑝

∑
𝑙=1

𝜃𝑙𝑃𝑖𝑙 + 𝑢𝑖 = 𝑃𝑃𝑃 ′
𝑖𝜃𝜃𝜃 + 𝑢𝑖,

where 𝑃𝑃𝑃 𝑖 = (𝑃𝑖1, … , 𝑃𝑖𝑝)′ and 𝜃𝜃𝜃 = (𝜃1, … , 𝜃𝑝)′. The least squares estimator of 𝜃𝜃𝜃 using the
regressors 𝑃𝑃𝑃 𝑖, 𝑖 = 1, … 𝑛 can then be inserted to Equation 11.7 to obtain an estimate for 𝛽𝛽𝛽.
In practice, the principal components are unknown and must be replaced by the first 𝑝 sample
principal components

𝑃𝑃𝑃 𝑖 = (𝑃𝑖1, … , 𝑃𝑖𝑝)′, 𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖.

The feasible least squares estimator for 𝜃 is

̂𝜃𝜃𝜃 = ( ̂𝜃1, … , ̂𝜃𝑝)′ = (
𝑛

∑
𝑖=1

𝑃𝑃𝑃 𝑖𝑃𝑃𝑃
′
𝑖)

−1 𝑛
∑
𝑖=1

𝑃𝑃𝑃 𝑖𝑌𝑖,
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and the principal components estimator for 𝛽𝛽𝛽 is

̂𝛽𝛽𝛽𝑝𝑐 =
𝑝

∑
𝑙=1

̂𝜃𝑙𝑤𝑤𝑤𝑙.

11.7 Selecting the number of factors

To select the number of principal components, one practical approach is to choose those that
explain a pre-specified percentage (90-99%) of the total variance.

Y = mtcars$mpg
X = model.matrix(mpg ~., data = mtcars)[,-1] |> scale()
## principal component analysis
pca = prcomp(X)
P = pca$x #full matrix of all principal components
## variance explained
eigenval = pca$sdev^2
varexpl = eigenval/sum(eigenval)
cumsum(varexpl)

[1] 0.5760217 0.8409861 0.9007075 0.9276582 0.9498832 0.9708950 0.9841870
[8] 0.9922551 0.9976204 1.0000000

The first four principal components explain more than 92% of the variance, and the first seven
more than 98%.

Another method involves creating a scree plot to display the eigenvalues (variances) for each
principal component and identifying the point where the eigenvalues sharply drop (elbow
point).

plot(eigenval)
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We find an elbow at four principal components.

Selecting the number of principal components, similar to shrinkage estimation, involves bal-
ancing variance and bias. If the Assumption (PC) holds, the PC estimator is unbiased; if it
doesn’t, a small bias is introduced. Increasing the number of components 𝑝 reduces bias but
increases variance, while decreasing 𝑝 reduces variance but increases bias.

Similarly to the shrinkage parameter in ridge and lasso estimation, the number of factors 𝑝
can be treated as a tuning parameter. We can use 𝑚-fold cross validation to select 𝑝 such that
the MSE is minimized.

The caret package in R provides a convenient way to perform cross-validation and select the
optimal number of principal components.

set.seed(111)
## PCR 10-fold cross-validation
library(caret)

Lade nötiges Paket: ggplot2

Lade nötiges Paket: lattice

myfunc.cvpca = function(p){
data_pca = data.frame(Y, P[,1:p])
cv = train(

Y ~ ., data = data_pca,
method = "lm",
metric = "RMSE",
trControl = trainControl(method = "cv", number = 10)
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)
return(cv$results$RMSE)

}
# Iterate function crossval over ncomp = 1, ..., maxcomp
maxcomp = 10 # select not more than number of variables (for data_small select <=4)
cv.pca = sapply(1:maxcomp, myfunc.cvpca) # sapply is useful for iterating over function arguments ncomp

# Find the number of components with the lowest RMSPE
which.min(cv.pca)

[1] 5

plot(cv.pca, type="l")
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The 10-fold cross validation method suggests to use 5 principal components.

11.8 R-codes

metrics-sec11.R
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