10 Shrinkage Estimation

library(glmnet)

Shrinkage estimation is a highly valuable technique in the context of high-dimensional regres-
sion analysis. It allows for the estimation of regression models with more regressors than
observations.

10.1 Mean squared error

The key measure of estimation accuracy is the mean squared error (MSE). The MSE of
an estimator 6 for a parameter 6 is

MSE(6) = E[(6 — 6)2].
The MSE can be decomposed into the variance plus squared bias:

MSE(6) = E[(6 — E[0)*] + (E[§] — 6)?

=Var|[0) =Bias(6)2

Proof. Subtracting and adding E[f] gives
(0—0)

2=
= (@—Ef

E[6) + E[6] — 6)?

~ -~

24 2(6 — E[0))(E[A) — 6) + (E[6] — 6)2.

~—)y

6]

The middle term is zero after taking the expectation:

~

E[(0—0)%] = E[(6 — E[f))?] +2 E[0 — E[0]] Bias(0) + Bias(0)>.

:Va'r[é] =0

g O

165

For instance, consider an i.i.d. sample Xi,..., X, with population mean E[X,] = p and
variance Var[X;] = 02. Let’s study the sample mean

I
N:ﬁ;Xi

as an estimator of u. You will find that

. . o?
Elp] = p, Varla] = —.

Proof. By the linearity of the expectation, we have

Bl = L3 B =

m

SRS

The independence of X, ..., X, implies

- 1 n 1 & o2
Var[u] = 7,L2VCLT|:ZX1':| =3 ZV@T[Xi] =
i=1 i=1

g O

The sample mean is unbiased for pu, i.e., Bias(fi) = E[i] — u = 0. The MSE equals its

variance:)

~ o

The sample mean is the best unbiased estimator for the population mean, but there exists
estimators with a lower MSE if we allow for a small bias.

10.2 A simple shrinkage estimator

Let us shrink our sample mean a bit towards 0 and define the alternative estimator
ﬁ:(l—IU)ﬂ, w6[071]

Setting the shrinkage weight to w = 0 gives i = /i (no shrinkage) and w =1 gives i = 0 (full
shrinkage). Our shrinkage estimator has the bias

Bias(ji) = E[(1 — w)fi] — jt = (1 — w) B[] —u = —uwp.

166

The variance is

[\

Varli] = Var[(1 - w)ill = (1 — w)*Var[i] = (1 - w)*~,

and the MSE is

2
MSE(j1) = Var[fi] + Bias(fi)? = (1 — w)2% +w?pl.

The optimal weight in terms of the MSE is
B 1
1+ np?/o?
Proof. We take the derivative of mse(fi) across w to obtain the first order condition:
—2(1 —w)o?/n + 2wu? = 0.

Solving for w gives w(1 + nu?/0?) = 1. Then, w* is the global minimum because the second
derivative is 202 /n + 2u? > 0. O O

For instance, if =1, 02 = 1, and n = 99, we have w* = 0.01.

The shrunk sample mean

~ - nu?/o?
=== ey Z

has a lower MSE than the usual sample mean:

MSE(ii') = (1— w22 + (w')2? < = = mselj)

This is a remarkable result because it tells us that the sample mean is not the best we can do
in the MSE sense to estimate a population mean. The shrinked estimator is more efficient. It

is biased, but the bias vanishes asymptotically since lim,, ,., w* = 0.

The optimal shrinkage parameter w* is infeasible because 12 /o2 is unknown. While insightful
theoretically, this result is not directly applicable in empirical work, and taking sample means
is still recommended.

However, the shrinkage principle can be very useful in the context of high-dimensional regres-
sion.

167

10.3 High-dimensional regression

Least squares regression works well when the number of regressors k is small relative to the
number of observations n. In a previous section on “too many regressors”, we discussed how
ordinary least squares (OLS) can overfit when k is too large compared to n. Specifically, if
k = n, the OLS regression line perfectly fits the data.

Many economic applications involve categorical variables that are transformed into a large
number of dummy variables. If we include pairwise interaction terms among J variables, we

get another Z;:ll i = J(J—1)/2 regressors (for example, 190 for J=20 and 4950 for J=100).

Accounting for further nonlinearities by adding squared and cubic terms or higher-order inter-
actions can result in thousands or even millions of regressors. Many of these regressors may
provide low informational value, but it is difficult to determine a priori which are relevant and
which are irrelevant.

If k > n, the OLS estimator is not uniquely defined because X’X does not have full rank. If
k =~ n the matrix X’X can be near singular, resulting in numerically unstable OLS coefficients
or high variance.

For the vector-valued (k-variate) estimator ﬁols the (conditional) MSE is

MSE(B,,|X) = E|(B,,, — B (B,,, — B)|X]

= Var[161X+ Bms(ols \X)(Bzas(ols \X))
where, under random sampling, OLS is unbiased:

Bias(B., |X) = E[B sl X] —B=0.

ols

Consequently, the MSE of OLS equals its variance:

MSE(B,|X) = Var[B,, |X] = (X'X) ' X'DX(X'X)"!

10.4 Ridge Regression

To avoid that (X’X)~! becomes very large or undefined for large k, we can introduce a shrink-
age parameter A and define the ridge regression estimator

Brigge = (X' X + M) X'Y. (10.1)

This estimator is well defined and does not suffer from multicollinearity problems, even if
k > n. The inverse (X’X + M)~ ! exists as long as A > 0. For A = 0, the ridge estimator
coincides with the OLS estimator.

168

While the OLS estimator is motivated from the minimization problem

min(Y — XB)'(Y — XB).

the ridge estimator is the minimizer of

min(Y — XB) (Y — XB) + M3'8. (10.2)

The minimization problem introduces a penalty for large values of 8. The solution is then
shrunk towards zero by A > 0.

10.5 Standardization

It is common practice to standardize the regressors in ridge regression:
~ X, — X, — 1
Xij = = C X=X
1 n ¥ n 4
1 i (X — X)? =1

Without standardization, variables with larger scales (i.e., larger variances) will disproportion-

ately influence the penalty term through A\3'8 = A ijl ﬁ?. Variables with smaller variance
may be under-penalized, while those with larger variance may be over-penalized.

Standardization ensures that each variable contributes equally to the penalty term, making
the penalty independent of the scale of the variables.

Standardizing makes the coefficient estimates more interpretable, as they will all be on the
same scale, which helps in understanding the relative importance of each variable.

10.6 Ridge Properties

The bias of the ridge estimator is

Bias(B,., |X)=—-MNX'X+\,)"'8,

ridge

and the covariance matrix is

Var[,B”.dge|X] = (X'X+ M, 'X'DX(X'X + M) *.
In the homoskedastic linear regression model, we have
MSE(B,,,,.1X) < MSE(B,,,|X)

if 0 <\ <202/8'B.

Similarly to the sample mean case, the upper bound 202 /8’8 does not give practical guidance
for selecting A because 8 and o2 are unknown.

169

10.7 Mean squared prediction error

The optimal value for A minimizes the MSE, but estimating the MSE of the ridge estimator
is not straightforward because it depends on the parameter 8 being estimated. Instead, it is
better to focus on the out-of-sample mean squared prediction error (MSPE).

Let (Y;,X,),...,(Y,,,X,,) be our data set (in-sample observations) with ridge estimator Equa-
tion 10.1, and let (Y°°%, X°°%) be another observation pair (out-of-sample observation) that is
independently drawn from the same population as (Y;,X,), ..., (Y,,X,).

The mean squared prediction error (MSPE) is

MSPE(ﬂridge> = E[(yoos - (Xoos)/ﬁridge)Q]'

Note that (Y°°%, X°°%) is independent of B because it has not been used for estimation.

?(Xoos) _ (Xoos)/ﬁ

ridge
-qoe 18 the predicted value of Yo%,
ridge

To estimate the MSPE, we can use a split sample.

1) We divide our observations randomly into a training sample (in-sample) of size n,,.,;,,
and a testing sample (out-of-sample) of size n,.,; With 7 = 1y, 5 + Myest:

(Ylins,Xilns)’ (Y’LTLS Xins)’ (Yloos’Xgos)’ (Yoos X oos)

Ntrain’ Nirain Ntest’ Niest
2) We estimate B using the training sample:
~ins Nirain)) -1 Nirain .)
ﬂ’r‘idge = (Z X'ZLnS<X2nS>, + AIk) Z Xﬁnsi/izns‘
i=1 =1
3) We evaluate the empirical MSPE using the testing sample,
- Niest , ~ins 2
MSPEsplit = rost Z <}/7LOOS - (Xioos) ﬂridge) (103)
est =1

Steps 2 and 3 are repeated for different values for A. We select the value for A that gives the
smallest estimated MSPE.

170

10.8 Cross validation

A problem with the split sample estimator is that it highly depends on the choice of the two
subsamples. An alternative is to select m subsamples (folds) and evaluate the MSPE using
each fold separately:

m-fold cross validation

1) Divide the sample into j = 1, ..., m randomly chosen folds/subsamples of approximately
equal size:

v, xMy, L x)y
AR SRR A5 ¢'5)

(v, X, (v x

m

2) Select j € {1,...,m} as left-out test sample and use the other subsamples to compute

the ridge estimator , where the j-th fold is not used.

J
ridge
3) Compute Equation 10.3 using the j-th folds as a test sample, i.e.,

MSPE, = L3 (- 0 B)

7
;=

4) The m-fold cross validation estimator is the weighted average over the m subsample
estimates of the MSPE:

m
— n, —
MSPE,, 1o =Y #MSPEj,
j=1
where n = Z;n:l n; is the total number of observations.
5) Repeat these steps over a grid of tuning parameters for A, and select the value for A that

minimizes M/S’?Em fold-

Common values for m are m = 5 and m = 10. The larger m, the less biased the estimation of
the MSPE is, but also the more computationally expensive the cross validation becomes.

The largest possible value for m is m = n, where each observation represents a fold. This
is also known as leave-one-out cross validation (LOOCV). LOOCV might be useful for small
datasets but is often infeasible for large dataset because of the large computation time.

171

10.9 L2 Regularization: Ridge

/

The ¢,-norm of a vector @ = (ay, ..., a;)" is defined as

k 1/p
lal, = (Z \ajlp) -

J=1

Important special cases are the ¢;-norm and ¢,-norm:

k k 1/2
fal =" lel ol = (Yoat) =V
=1

J=1

The ¢;-norm is the sum of absolute values, and the ¢y,-norm, also known as the Euclidean
norm, represents the length of the vector in the Euclidean space.

Ridge regression is also called L2 regularization because it penalizes the sum of squared
errors by the square of the £,-norm of the coefficient vector, ||B8]3 = 8’8. Ridge is the solution
to the minimization problem Equation 10.2, which can be written as

~

B, age = argming (Y — XB)'(Y — XB) + AlBI3.

10.10 L1 Regularization: Lasso

An alternative approach is L1 regularization, also known as lasso. The lasso estimator is
defined as

Brasso = argming (¥ — XB)' (Y — XB) + A|B| .
where 8], = 37, |;].

The elastic net estimator is a hybrid method. It combines L1 and L2 regularization using a
weight 0 < a < 1:

Bt o = argming(Y — XB)" (Y — XB) + (e Bl; + (1 —)] B]3)-
This includes ridge (o = 0) and lasso (a = 1) as special cases.

Ridge has a closed form solution given by Equation 10.1. Lasso and elastic net with a >
0 require numerical solutions by means of quadratic programming. The solution typically
involves some zero coefficients.

172

10.11 Implementation in R

Let’s consider the mtcars dataset, which is available in base R. Have a look at ?mtcars to see
the data description.

We estimate a ridge regression model to predict the variable mpg (miles per gallon) using the
other variables. We consider the values A = 0.5 and A = 2.5.

Ridge, lasso, and elastic net are implemented in the glmnet package. The glmnet () function
requires matrix-valued data as input. The model.matrix() command is useful because it
produces the regressor matrix X and converts categorical variables into dummy variables.

Y = mtcars$mpg

X = model.matrix(mpg ~., data = mtcars)[,-1]

Number of observations m and regressors k:

dim(X)

[1] 32 10

fit.ridgel = glmnet(x=X, y=Y, alpha=0, lambda = 0.5)
fit.ridge2 = glmnet(x=X, y=Y, alpha=0, lambda = 2.5)
fits = cbind(coef(fit.ridgel), coef(fit.ridge2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")

fits

11 x 2 sparse Matrix of class "dgCMatrix"

lambda=0.5 lambda=2.5
(Intercept) 19.420400249 21.179818696
cyl -0.250698757 -0.368541841
disp -0.001893223 -0.005184086
hp -0.013079878 -0.011710951
drat 0.978514241 1.052837310
wt -1.902328296 -1.264016952
gsec 0.316107066 0.164790158
Vs 0.472551434 0.755205256
am 2.113922488 1.655241565
gear 0.631836101 0.546732963
carb -0.661215998 -0.560023425

standardized. Therefore the coefficients represent the marginal
response variable for a one standard deviation change in the

By default the regressors are
effects as the change in the

173

regressor. For instance, with A = 0.5, the coefficient of wt (weight) is -1.9, which means that
a one standard deviation increase in weight leads to a decrease of 1.9 miles per gallon.

When we exclude the intercept, the average coefficient size (with respect to the ¢, norm)
becomes small for larger values of A:

c(
sqrt (sum(coef (fit.ridgel) [-1]172)),
sqrt (sum(coef (fit.ridge2) [-1]172))
)

[1] 3.204323 2.606156

The lasso estimator (« = 1) sets many coefficients equal to zero:

fit.lassol = glmnet(x=X, y=Y, alpha=1, lambda = 0.5)
fit.lasso2 = glmnet(x=X, y=Y, alpha=1, lambda = 2.5)
fits = cbind(coef(fit.lassol), coef(fit.lasso2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")

fits

11 x 2 sparse Matrix of class "dgCMatrix"
lambda=0.5 lambda=2.5
(Intercept) 35.88689755 30.0625817

cyl -0.85565434 -0.7090799
disp .

hp -0.01411517

drat 0.07603453 .

wt -2.67338139 -1.7358069
gsec

Vs .

am 0.48651385

gear .

carb -0.10722338

The cv.glmnet() command estimates the optimal shrinkage parameter using 10-fold cross
validation:

set.seed(123) ## for reproducibility
cv.glmnet (x=X, y=Y, alpha = 0)$lambda.min

174

[1] 2.746789

cv.glmnet (x=X, y=Y, alpha = 1)$lambda.min

[1] 0.8007036

We can use ridge and lasso to estimate linear models with more variables than observations.
The command ~2 includes all pairwise interaction terms, which produces 55 variables in total.
The dataset has n = 32 observations.

X.large = model.matrix(mpg ~. "2, data = mtcars)[,-1]
dim(X.large) # more regressors than observations

[1] 32 565

fit.ridgelarge = glmnet(x=X.large, y=Y, alpha=0, lambda = 0.5)
fit.lassolarge = glmnet(x=X.large, y=Y, alpha=1, lambda
fits = cbind(

coef(fit.ridgelarge), coef(fit.lassolarge)

]
o
(62}
~

)

colnames(fits) = c("ridge", "lasso")
fits

56 x 2 sparse Matrix of class "dgCMatrix"

ridge lasso
(Intercept) 1.315259e+01 23.655330629
cyl -4.061218e-02 -0.036308043
disp -8.137358e-04
hp -5.588290e-03
drat 4.386174e-01 .
wt -5.547986e-01 -1.301739306
gsec 2.308772e-01
Vs 6.705889e-01
am 4.379822e-01
gear 8.788479e-01
carb -1.537294e-01
cyl:disp 6.830897e-05
cyl:hp 1.351742e-04
cyl:drat 2.455464e-02
cyl:wt -2.621868e-03

175

cyl:qgsec
cyl:vs
cyl:am
cyl:gear
cyl:carb
disp:hp
disp:drat
disp:wt
disp:qgsec
disp:vs
disp:am
disp:gear
disp:carb
hp:drat
hp:wt
hp:gsec
hp:vs
hp:am
hp:gear
hp:carb
drat:wt
drat:gsec
drat:vs
drat:am
drat:gear
drat:carb
wt:gsec
wt:vs
wt:am
wt:gear
wt:carb
gsec:vs
gsec:am
gsec:gear
gsec:carb
vs:am
Vs:gear
vs:carb
am:gear
am:carb
gear:carb

To get the fitted values you may use the predict () command:

.358094e-03
.591177e-01
.102385e-02
.481957e-02
.499023e-04
.592521e-06
.421536e-05
.191122e-04
.789464e-05
.280463e-03
.043597e-03
.601317e-04
.255358e-04
.086003e-03
.404097e-04 .
.347470e-04 -0.001328046
.858343e-02
.604620e-03
.464491e-04
.107116e-04
.766081e-01

3.828881e-02

[

.123963e-01

5.047132e-02

.294201e-02
.770358e-02
.289204e-02
.239643e-01
.197733e-01
.890703e-01
.497574e-02
.114409e-02
.199239e-02
.035311e-02
.859676e-02
.688134e-01
.311330e-01
.768199e-01
.462749e-01
.588431e-01

8.165764e-03

-0.337667877

0.073725291

0.041623415

2.429571498

176

Yhatridge = predict(fit.ridgelarge, newx = X.large)
Yhatlasso = predict(fit.lassolarge, newx = X.large)
Yhats = cbind(Y, Yhatridge, Yhatlasso)
colnames(Yhats) = c("Y", "Yhat-ridge", "Yhat-lasso")
Yhats

Y Yhat-ridge Yhat-lasso

Mazda RX4 21. 20.94312 21.64528
Mazda RX4 Wag 21. 20.47797 21.14997
Datsun 710 22. 26.12112 25.98585
Hornet 4 Drive 21. 19.57785 19.91064
Hornet Sportabout 18. 17.25059 17.35026
Valiant 18. 19.256815 19.52858
Duster 360 14. 14.80168 15.42082
Merc 240D 24. 23.06386 22.50685
Merc 230 22. 23.69586 22.78181
Merc 280 19. 18.47341 19.75241
Merc 280C 17. 18.755621 19.92770
Merc 450SE 16. 15.39830 15.79922
Merc 450SL 17. 16.19856 16.61670
Merc 450SLC 15. 16.21931 16.54465

Cadillac Fleetwood 10.
Lincoln Continental 10.
Chrysler Imperial 14.

12.25717 12.57063
11.74625 11.88810
11.64161 11.58002

Fiat 128 32. 28.79845 27.43656
Honda Civic 30. 31.07410 29.68475
Toyota Corolla 33. 30.63399 28.72288
Toyota Corona 21. 22.35048 22.60097
Dodge Challenger 15. 17.17402 17.68091
AMC Javelin 15. 17.70056 17.97138
Camaro Z28 13. 14.14050 14.67766
Pontiac Firebird 19. 16.37763 16.39890
Fiat X1-9 27. 29.32240 27.93021
Porsche 914-2 26. 26.15812 24.43481
Lotus Europa 30. 28.93150 27.72235

Ford Pantera L 15.
Ferrari Dino 19.
Maserati Bora 15.
Volvo 142E 21.

16.69717 17.16642
20.27929 20.20595
14.07394 14.80373
23.30782 24.50302

B O NP O WNWNOO O PP NIPEEPRPNWPLEONOP WL, NP> OO O

177

10.12 R-codes

metrics-secl10.R

178

