
10 Shrinkage Estimation
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Shrinkage estimation is a highly valuable technique in the context of high-dimensional regres-
sion analysis. It allows for the estimation of regression models with more regressors than
observations.

10.1 Mean squared error

The key measure of estimation accuracy is the mean squared error (MSE). The MSE of
an estimator ̂𝜃 for a parameter 𝜃 is

𝑀𝑆𝐸( ̂𝜃) = 𝐸[( ̂𝜃 − 𝜃)2].

The MSE can be decomposed into the variance plus squared bias:

𝑀𝑆𝐸( ̂𝜃) = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+ (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝐵𝑖𝑎𝑠( ̂𝜃)2

Proof. Subtracting and adding 𝐸[ ̂𝜃] gives

( ̂𝜃 − 𝜃)2 = ( ̂𝜃 − 𝐸[ ̂𝜃] + 𝐸[ ̂𝜃] − 𝜃)2

= ( ̂𝜃 − 𝐸[ ̂𝜃])2 + 2( ̂𝜃 − 𝐸[ ̂𝜃])(𝐸[ ̂𝜃] − 𝜃⏟
𝐵𝑖𝑎𝑠( ̂𝜃)

) + (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝐵𝑖𝑎𝑠( ̂𝜃)2

.

The middle term is zero after taking the expectation:

𝐸[( ̂𝜃 − 𝜃)2] = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+2 𝐸[ ̂𝜃 − 𝐸[ ̂𝜃]]⏟⏟⏟⏟⏟
=0

𝐵𝑖𝑎𝑠( ̂𝜃) + 𝐵𝑖𝑎𝑠( ̂𝜃)2.

□
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For instance, consider an i.i.d. sample 𝑋1, … , 𝑋𝑛 with population mean 𝐸[𝑋𝑖] = 𝜇 and
variance 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2. Let’s study the sample mean

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

as an estimator of 𝜇. You will find that

𝐸[ ̂𝜇] = 𝜇, 𝑉 𝑎𝑟[ ̂𝜇] = 𝜎2

𝑛 .

Proof. By the linearity of the expectation, we have

𝐸[ ̂𝜇] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋𝑖]⏟
𝜇

= 𝜇.

The independence of 𝑋1, … , 𝑋𝑛 implies

𝑉 𝑎𝑟[ ̂𝜇] = 1
𝑛2 𝑉 𝑎𝑟[

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2

𝑛

□

The sample mean is unbiased for 𝜇, i.e., 𝐵𝑖𝑎𝑠( ̂𝜇) = 𝐸[ ̂𝜇] − 𝜇 = 0. The MSE equals its
variance:

𝑀𝑆𝐸( ̂𝜇) = 𝜎2

𝑛 .

The sample mean is the best unbiased estimator for the population mean, but there exists
estimators with a lower MSE if we allow for a small bias.

10.2 A simple shrinkage estimator

Let us shrink our sample mean a bit towards 0 and define the alternative estimator

̃𝜇 = (1 − 𝑤) ̂𝜇, 𝑤 ∈ [0, 1].

Setting the shrinkage weight to 𝑤 = 0 gives ̃𝜇 = ̂𝜇 (no shrinkage) and 𝑤 = 1 gives ̃𝜇 = 0 (full
shrinkage). Our shrinkage estimator has the bias

𝐵𝑖𝑎𝑠( ̃𝜇) = 𝐸[(1 − 𝑤) ̂𝜇] − 𝜇 = (1 − 𝑤) 𝐸[ ̂𝜇]⏟
=𝜇

−𝜇 = −𝑤𝜇.
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The variance is

𝑉 𝑎𝑟[ ̃𝜇] = 𝑉 𝑎𝑟[(1 − 𝑤) ̂𝜇] = (1 − 𝑤)2𝑉 𝑎𝑟[ ̂𝜇] = (1 − 𝑤)2 𝜎2

𝑛 ,

and the MSE is

𝑀𝑆𝐸( ̃𝜇) = 𝑉 𝑎𝑟[ ̃𝜇] + 𝐵𝑖𝑎𝑠( ̃𝜇)2 = (1 − 𝑤)2 𝜎2

𝑛 + 𝑤2𝜇2.

The optimal weight in terms of the MSE is

𝑤∗ = 1
1 + 𝑛𝜇2/𝜎2

Proof. We take the derivative of 𝑚𝑠𝑒( ̃𝜇) across 𝑤 to obtain the first order condition:

−2(1 − 𝑤)𝜎2/𝑛 + 2𝑤𝜇2 = 0.

Solving for 𝑤 gives 𝑤(1 + 𝑛𝜇2/𝜎2) = 1. Then, 𝑤∗ is the global minimum because the second
derivative is 2𝜎2/𝑛 + 2𝜇2 > 0. □

For instance, if 𝜇 = 1, 𝜎2 = 1, and 𝑛 = 99, we have 𝑤∗ = 0.01.
The shrunk sample mean

̃𝜇∗ = (1 − 𝑤∗) ̂𝜇 = 𝑛𝜇2/𝜎2

1 + 𝑛𝜇2/𝜎2
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

has a lower MSE than the usual sample mean:

𝑀𝑆𝐸( ̃𝜇∗) = (1 − 𝑤∗)2 𝜎2

𝑛 + (𝑤∗)2𝜇2 < 𝜎2

𝑛 = 𝑚𝑠𝑒( ̂𝜇)

This is a remarkable result because it tells us that the sample mean is not the best we can do
in the MSE sense to estimate a population mean. The shrinked estimator is more efficient. It
is biased, but the bias vanishes asymptotically since lim𝑛→∞ 𝑤∗ = 0.
The optimal shrinkage parameter 𝑤∗ is infeasible because 𝜇2/𝜎2 is unknown. While insightful
theoretically, this result is not directly applicable in empirical work, and taking sample means
is still recommended.

However, the shrinkage principle can be very useful in the context of high-dimensional regres-
sion.
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10.3 High-dimensional regression

Least squares regression works well when the number of regressors 𝑘 is small relative to the
number of observations 𝑛. In a previous section on “too many regressors”, we discussed how
ordinary least squares (OLS) can overfit when 𝑘 is too large compared to 𝑛. Specifically, if
𝑘 = 𝑛, the OLS regression line perfectly fits the data.

Many economic applications involve categorical variables that are transformed into a large
number of dummy variables. If we include pairwise interaction terms among 𝐽 variables, we
get another ∑𝐽−1

𝑖=1 𝑖 = 𝐽(𝐽 −1)/2 regressors (for example, 190 for J=20 and 4950 for J=100).

Accounting for further nonlinearities by adding squared and cubic terms or higher-order inter-
actions can result in thousands or even millions of regressors. Many of these regressors may
provide low informational value, but it is difficult to determine a priori which are relevant and
which are irrelevant.

If 𝑘 > 𝑛, the OLS estimator is not uniquely defined because 𝑋𝑋𝑋′𝑋𝑋𝑋 does not have full rank. If
𝑘 ≈ 𝑛 the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋 can be near singular, resulting in numerically unstable OLS coefficients
or high variance.

For the vector-valued (𝑘-variate) estimator ̂𝛽𝛽𝛽𝑜𝑙𝑠 the (conditional) MSE is

𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)′( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)|𝑋𝑋𝑋]
= 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] + 𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)(𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋))′,

where, under random sampling, OLS is unbiased:

𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] − 𝛽𝛽𝛽 = 000.

Consequently, the MSE of OLS equals its variance:

𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

10.4 Ridge Regression

To avoid that (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 becomes very large or undefined for large 𝑘, we can introduce a shrink-
age parameter 𝜆 and define the ridge regression estimator

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝑌𝑌𝑌 . (10.1)

This estimator is well defined and does not suffer from multicollinearity problems, even if
𝑘 > 𝑛. The inverse (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1 exists as long as 𝜆 > 0. For 𝜆 = 0, the ridge estimator
coincides with the OLS estimator.
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While the OLS estimator is motivated from the minimization problem

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽),

the ridge estimator is the minimizer of

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽. (10.2)

The minimization problem introduces a penalty for large values of 𝛽𝛽𝛽. The solution is then
shrunk towards zero by 𝜆 > 0.

10.5 Standardization

It is common practice to standardize the regressors in ridge regression:

𝑋𝑖𝑗 = 𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗

√ 1
𝑛−1 ∑𝑛

𝑖=1(𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗)2
, 𝑋𝑋𝑋𝑗 = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑗

Without standardization, variables with larger scales (i.e., larger variances) will disproportion-
ately influence the penalty term through 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽 = 𝜆 ∑𝑘

𝑗=1 𝛽2
𝑗 . Variables with smaller variance

may be under-penalized, while those with larger variance may be over-penalized.

Standardization ensures that each variable contributes equally to the penalty term, making
the penalty independent of the scale of the variables.

Standardizing makes the coefficient estimates more interpretable, as they will all be on the
same scale, which helps in understanding the relative importance of each variable.

10.6 Ridge Properties

The bias of the ridge estimator is

𝐵𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) = −𝜆(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝛽𝛽𝛽,
and the covariance matrix is

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1.
In the homoskedastic linear regression model, we have

𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) < 𝑀𝑆𝐸( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)
if 0 < 𝜆 < 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽.
Similarly to the sample mean case, the upper bound 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽 does not give practical guidance
for selecting 𝜆 because 𝛽𝛽𝛽 and 𝜎2 are unknown.
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10.7 Mean squared prediction error

The optimal value for 𝜆 minimizes the MSE, but estimating the MSE of the ridge estimator
is not straightforward because it depends on the parameter 𝛽𝛽𝛽 being estimated. Instead, it is
better to focus on the out-of-sample mean squared prediction error (MSPE).

Let (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛) be our data set (in-sample observations) with ridge estimator Equa-
tion 10.1, and let (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) be another observation pair (out-of-sample observation) that is
independently drawn from the same population as (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛).
The mean squared prediction error (MSPE) is

𝑀𝑆𝑃𝐸( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒) = 𝐸[(𝑌 𝑜𝑜𝑠 − (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒)2].

Note that (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) is independent of ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 because it has not been used for estimation.
𝑌 (𝑋𝑋𝑋𝑜𝑜𝑠) = (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 is the predicted value of 𝑌 𝑜𝑜𝑠.

To estimate the MSPE, we can use a split sample.

1) We divide our observations randomly into a training sample (in-sample) of size 𝑛𝑡𝑟𝑎𝑖𝑛
and a testing sample (out-of-sample) of size 𝑛𝑡𝑒𝑠𝑡 with 𝑛 = 𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡:

(𝑌 𝑖𝑛𝑠
1 ,𝑋𝑋𝑋𝑖𝑛𝑠

1 ), … (𝑌 𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

,𝑋𝑋𝑋𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

), (𝑌 𝑜𝑜𝑠
1 ,𝑋𝑋𝑋𝑜𝑜𝑠

1 ), … (𝑌 𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

,𝑋𝑋𝑋𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

)

2) We estimate 𝛽𝛽𝛽 using the training sample:

̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒 = (

𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 (𝑋𝑋𝑋𝑖𝑛𝑠

𝑖 )′ + 𝜆𝐼𝐼𝐼𝑘)
−1 𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 𝑌 𝑖𝑛𝑠

𝑖 .

3) We evaluate the empirical MSPE using the testing sample,

𝑀𝑆𝑃𝐸𝑠𝑝𝑙𝑖𝑡 = 1
𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑒𝑠𝑡

∑
𝑖=1

(𝑌 𝑜𝑜𝑠
𝑖 − (𝑋𝑋𝑋𝑜𝑜𝑠

𝑖 )′ ̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒)

2
(10.3)

Steps 2 and 3 are repeated for different values for 𝜆. We select the value for 𝜆 that gives the
smallest estimated MSPE.
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10.8 Cross validation

A problem with the split sample estimator is that it highly depends on the choice of the two
subsamples. An alternative is to select 𝑚 subsamples (folds) and evaluate the MSPE using
each fold separately:

m-fold cross validation

1) Divide the sample into 𝑗 = 1, … , 𝑚 randomly chosen folds/subsamples of approximately
equal size:

(𝑌 (1)
1 ,𝑋𝑋𝑋(1)

1 ), … , (𝑌 (1)
𝑛1 ,𝑋𝑋𝑋(1)

𝑛1 )
(𝑌 (2)

1 ,𝑋𝑋𝑋(2)
1 ), … , (𝑌 (2)

𝑛2 ,𝑋𝑋𝑋(2)
𝑛2 )

⋮
(𝑌 (𝑚)

1 ,𝑋𝑋𝑋(𝑚)
1 ), … , (𝑌 (𝑚)

𝑛𝑚 ,𝑋𝑋𝑋(𝑚)
𝑛𝑚 )

2) Select 𝑗 ∈ {1, … , 𝑚} as left-out test sample and use the other subsamples to compute
the ridge estimator ̂𝛽𝛽𝛽

(−𝑗)
𝑟𝑖𝑑𝑔𝑒, where the 𝑗-th fold is not used.

3) Compute Equation 10.3 using the j-th folds as a test sample, i.e.,

𝑀𝑆𝑃𝐸𝑗 = 1
𝑛𝑗

𝑛𝑗

∑
𝑖=1

(𝑌 (𝑗)
𝑖 − (𝑋𝑋𝑋(𝑗)

𝑖 )′ ̂𝛽𝛽𝛽
(−𝑗)
𝑟𝑖𝑑𝑔𝑒)

2

4) The m-fold cross validation estimator is the weighted average over the m subsample
estimates of the MSPE:

𝑀𝑆𝑃𝐸𝑚𝑓𝑜𝑙𝑑 =
𝑚

∑
𝑗=1

𝑛𝑗
𝑛 𝑀𝑆𝑃𝐸𝑗,

where 𝑛 = ∑𝑚
𝑗=1 𝑛𝑗 is the total number of observations.

5) Repeat these steps over a grid of tuning parameters for 𝜆, and select the value for 𝜆 that
minimizes 𝑀𝑆𝑃 𝐸𝑚𝑓𝑜𝑙𝑑.

Common values for 𝑚 are 𝑚 = 5 and 𝑚 = 10. The larger m, the less biased the estimation of
the MSPE is, but also the more computationally expensive the cross validation becomes.

The largest possible value for m is 𝑚 = 𝑛, where each observation represents a fold. This
is also known as leave-one-out cross validation (LOOCV). LOOCV might be useful for small
datasets but is often infeasible for large dataset because of the large computation time.
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10.9 L2 Regularization: Ridge

The ℓ𝑝-norm of a vector 𝑎𝑎𝑎 = (𝑎1, … , 𝑎𝑘)′ is defined as

‖𝑎𝑎𝑎‖𝑝 = (
𝑘

∑
𝑗=1

|𝑎𝑗|𝑝)
1/𝑝

.

Important special cases are the ℓ1-norm and ℓ2-norm:

‖𝑎𝑎𝑎‖1 =
𝑘

∑
𝑗=1

|𝑎𝑗|, ‖𝑎𝑎𝑎‖2 = (
𝑘

∑
𝑗=1

𝑎2
𝑗)

1/2
=

√
𝑎𝑎𝑎′𝑎𝑎𝑎.

The ℓ1-norm is the sum of absolute values, and the ℓ2-norm, also known as the Euclidean
norm, represents the length of the vector in the Euclidean space.

Ridge regression is also called L2 regularization because it penalizes the sum of squared
errors by the square of the ℓ2-norm of the coefficient vector, ‖𝛽𝛽𝛽‖2

2 = 𝛽𝛽𝛽′𝛽𝛽𝛽. Ridge is the solution
to the minimization problem Equation 10.2, which can be written as

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖2
2.

10.10 L1 Regularization: Lasso

An alternative approach is L1 regularization, also known as lasso. The lasso estimator is
defined as

̂𝛽𝛽𝛽𝑙𝑎𝑠𝑠𝑜 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖1,

where ‖𝛽𝛽𝛽‖1 = ∑𝑘
𝑗=1 |𝛽𝑗|.

The elastic net estimator is a hybrid method. It combines L1 and L2 regularization using a
weight 0 ≤ 𝛼 ≤ 1:

̂𝛽𝛽𝛽𝑛𝑒𝑡,𝛼 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆(𝛼‖𝛽𝛽𝛽‖1 + (1 − 𝛼)‖𝛽𝛽𝛽‖2
2).

This includes ridge (𝛼 = 0) and lasso (𝛼 = 1) as special cases.

Ridge has a closed form solution given by Equation 10.1. Lasso and elastic net with 𝛼 >
0 require numerical solutions by means of quadratic programming. The solution typically
involves some zero coefficients.
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10.11 Implementation in R

Let’s consider the mtcars dataset, which is available in base R. Have a look at ?mtcars to see
the data description.

We estimate a ridge regression model to predict the variable mpg (miles per gallon) using the
other variables. We consider the values 𝜆 = 0.5 and 𝜆 = 2.5.
Ridge, lasso, and elastic net are implemented in the glmnet package. The glmnet() function
requires matrix-valued data as input. The model.matrix() command is useful because it
produces the regressor matrix 𝑋𝑋𝑋 and converts categorical variables into dummy variables.

Y = mtcars$mpg
X = model.matrix(mpg ~., data = mtcars)[,-1]
## Number of observations n and regressors k:
dim(X)

[1] 32 10

fit.ridge1 = glmnet(x=X, y=Y, alpha=0, lambda = 0.5)
fit.ridge2 = glmnet(x=X, y=Y, alpha=0, lambda = 2.5)
fits = cbind(coef(fit.ridge1), coef(fit.ridge2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")
fits

11 x 2 sparse Matrix of class "dgCMatrix"
lambda=0.5 lambda=2.5

(Intercept) 19.420400249 21.179818696
cyl -0.250698757 -0.368541841
disp -0.001893223 -0.005184086
hp -0.013079878 -0.011710951
drat 0.978514241 1.052837310
wt -1.902328296 -1.264016952
qsec 0.316107066 0.164790158
vs 0.472551434 0.755205256
am 2.113922488 1.655241565
gear 0.631836101 0.546732963
carb -0.661215998 -0.560023425

By default the regressors are standardized. Therefore the coefficients represent the marginal
effects as the change in the response variable for a one standard deviation change in the
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regressor. For instance, with 𝜆 = 0.5, the coefficient of wt (weight) is -1.9, which means that
a one standard deviation increase in weight leads to a decrease of 1.9 miles per gallon.

When we exclude the intercept, the average coefficient size (with respect to the ℓ2 norm)
becomes small for larger values of 𝜆:

c(
sqrt(sum(coef(fit.ridge1)[-1]^2)),
sqrt(sum(coef(fit.ridge2)[-1]^2))

)

[1] 3.204323 2.606156

The lasso estimator (𝛼 = 1) sets many coefficients equal to zero:

fit.lasso1 = glmnet(x=X, y=Y, alpha=1, lambda = 0.5)
fit.lasso2 = glmnet(x=X, y=Y, alpha=1, lambda = 2.5)
fits = cbind(coef(fit.lasso1), coef(fit.lasso2))
colnames(fits) = c("lambda=0.5", "lambda=2.5")
fits

11 x 2 sparse Matrix of class "dgCMatrix"
lambda=0.5 lambda=2.5

(Intercept) 35.88689755 30.0625817
cyl -0.85565434 -0.7090799
disp . .
hp -0.01411517 .
drat 0.07603453 .
wt -2.67338139 -1.7358069
qsec . .
vs . .
am 0.48651385 .
gear . .
carb -0.10722338 .

The cv.glmnet() command estimates the optimal shrinkage parameter using 10-fold cross
validation:

set.seed(123) ## for reproducibility
cv.glmnet(x=X, y=Y, alpha = 0)$lambda.min
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[1] 2.746789

cv.glmnet(x=X, y=Y, alpha = 1)$lambda.min

[1] 0.8007036

We can use ridge and lasso to estimate linear models with more variables than observations.
The command ^2 includes all pairwise interaction terms, which produces 55 variables in total.
The dataset has 𝑛 = 32 observations.

X.large = model.matrix(mpg ~. ^2, data = mtcars)[,-1]
dim(X.large) # more regressors than observations

[1] 32 55

fit.ridgelarge = glmnet(x=X.large, y=Y, alpha=0, lambda = 0.5)
fit.lassolarge = glmnet(x=X.large, y=Y, alpha=1, lambda = 0.5)
fits = cbind(
coef(fit.ridgelarge), coef(fit.lassolarge)

)
colnames(fits) = c("ridge", "lasso")
fits

56 x 2 sparse Matrix of class "dgCMatrix"
ridge lasso

(Intercept) 1.315259e+01 23.655330629
cyl -4.061218e-02 -0.036308043
disp -8.137358e-04 .
hp -5.588290e-03 .
drat 4.386174e-01 .
wt -5.547986e-01 -1.301739306
qsec 2.308772e-01 .
vs 6.705889e-01 .
am 4.379822e-01 .
gear 8.788479e-01 .
carb -1.537294e-01 .
cyl:disp 6.830897e-05 .
cyl:hp 1.351742e-04 .
cyl:drat 2.455464e-02 .
cyl:wt -2.621868e-03 .
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cyl:qsec 3.358094e-03 .
cyl:vs 1.591177e-01 .
cyl:am 6.102385e-02 .
cyl:gear 3.481957e-02 .
cyl:carb 7.499023e-04 .
disp:hp 8.592521e-06 .
disp:drat -9.421536e-05 .
disp:wt 2.191122e-04 .
disp:qsec -1.789464e-05 .
disp:vs -1.280463e-03 .
disp:am -9.043597e-03 .
disp:gear -3.601317e-04 .
disp:carb -1.255358e-04 .
hp:drat -2.086003e-03 .
hp:wt 4.404097e-04 .
hp:qsec -4.347470e-04 -0.001328046
hp:vs -1.858343e-02 .
hp:am -2.604620e-03 .
hp:gear -3.464491e-04 .
hp:carb 9.107116e-04 .
drat:wt -1.766081e-01 -0.337667877
drat:qsec 3.828881e-02 0.073725291
drat:vs 1.123963e-01 .
drat:am 5.047132e-02 .
drat:gear 8.294201e-02 .
drat:carb -4.770358e-02 .
wt:qsec -3.289204e-02 .
wt:vs -3.239643e-01 .
wt:am -4.197733e-01 .
wt:gear -1.890703e-01 .
wt:carb -1.497574e-02 .
qsec:vs 3.114409e-02 .
qsec:am 5.199239e-02 .
qsec:gear 7.035311e-02 0.041623415
qsec:carb -1.859676e-02 .
vs:am 8.688134e-01 2.429571498
vs:gear 3.311330e-01 .
vs:carb -2.768199e-01 .
am:gear 1.462749e-01 .
am:carb 1.588431e-01 .
gear:carb 8.165764e-03 .

To get the fitted values you may use the predict() command:
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Yhatridge = predict(fit.ridgelarge, newx = X.large)
Yhatlasso = predict(fit.lassolarge, newx = X.large)
Yhats = cbind(Y, Yhatridge, Yhatlasso)
colnames(Yhats) = c("Y", "Yhat-ridge", "Yhat-lasso")
Yhats

Y Yhat-ridge Yhat-lasso
Mazda RX4 21.0 20.94312 21.64528
Mazda RX4 Wag 21.0 20.47797 21.14997
Datsun 710 22.8 26.12112 25.98585
Hornet 4 Drive 21.4 19.57785 19.91064
Hornet Sportabout 18.7 17.25059 17.35026
Valiant 18.1 19.25815 19.52858
Duster 360 14.3 14.80168 15.42082
Merc 240D 24.4 23.06386 22.50685
Merc 230 22.8 23.69586 22.78181
Merc 280 19.2 18.47341 19.75241
Merc 280C 17.8 18.75521 19.92770
Merc 450SE 16.4 15.39830 15.79922
Merc 450SL 17.3 16.19856 16.61670
Merc 450SLC 15.2 16.21931 16.54465
Cadillac Fleetwood 10.4 12.25717 12.57063
Lincoln Continental 10.4 11.74625 11.88810
Chrysler Imperial 14.7 11.64161 11.58002
Fiat 128 32.4 28.79845 27.43656
Honda Civic 30.4 31.07410 29.68475
Toyota Corolla 33.9 30.63399 28.72288
Toyota Corona 21.5 22.35048 22.60097
Dodge Challenger 15.5 17.17402 17.68091
AMC Javelin 15.2 17.70056 17.97138
Camaro Z28 13.3 14.14050 14.67766
Pontiac Firebird 19.2 16.37763 16.39890
Fiat X1-9 27.3 29.32240 27.93021
Porsche 914-2 26.0 26.15812 24.43481
Lotus Europa 30.4 28.93150 27.72235
Ford Pantera L 15.8 16.69717 17.16642
Ferrari Dino 19.7 20.27929 20.20595
Maserati Bora 15.0 14.07394 14.80373
Volvo 142E 21.4 23.30782 24.50302
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10.12 R-codes

metrics-sec10.R
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