
11 Principal Components

If two regressors are highly correlated, we can typically drop one of the regressors because it
mostly contains the same information.

The idea of principal component regression is to exploit the correlations among the regressors
to reduce their number while retaining as much of the original information as possible.

11.1 Principal Components

The principal components (PC) are linear combinations of the regressor variables that capture
as much of the variation in the original variables as possible.

Principal Components

Let 𝑋𝑋𝑋𝑖 be a 𝑘-variate vector of regressor variables.

The first principal component is 𝑃𝑖1 = 𝑤𝑤𝑤′
1𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤1 satisfies

𝑤𝑤𝑤1 = argmax𝑤𝑤𝑤′𝑤𝑤𝑤=1 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

The second principal component is 𝑃𝑖2 = 𝑤𝑤𝑤′
2𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤2 satisfies

𝑤𝑤𝑤2 = argmax𝑤𝑤𝑤′𝑤𝑤𝑤=1
𝑤𝑤𝑤′𝑤𝑤𝑤1=0

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

The 𝑙-th principal component is 𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤𝑙 satisfies

𝑤𝑤𝑤𝑙 = argmax 𝑤𝑤𝑤′𝑤𝑤𝑤=1
𝑤𝑤𝑤′𝑤𝑤𝑤1=…=𝑤𝑤𝑤′𝑤𝑤𝑤𝑙−1=0

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

A 𝑘-variate regressor vector 𝑋𝑋𝑋𝑖 has 𝑘 principal components 𝑃𝑖1, … , 𝑃𝑖𝑘 and 𝑘 corresponding
weights or principal component loadings 𝑤𝑤𝑤1,𝑤𝑤𝑤2, … ,𝑤𝑤𝑤𝑘.

By definition, the principal components are descendingly ordered by their variance:

𝑉 𝑎𝑟[𝑃𝑖1] ≥ 𝑉 𝑎𝑟[𝑃𝑖2] ≥ … ≥ 𝑉 𝑎𝑟[𝑃𝑖𝑘] ≥ 0

The principal component weights are orthonormal:

𝑤𝑤𝑤′
𝑖𝑤𝑤𝑤𝑗 = {1 if 𝑖 = 𝑗,

0 if 𝑖 ≠ 𝑗.
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Moreover, 𝑤𝑤𝑤1,𝑤𝑤𝑤2, … ,𝑤𝑤𝑤𝑘 form an orthonormal basis for the 𝑘-dimensional vector space ℝ𝑘. The
regressor vector admits the following decomposition into its principal components:

𝑋𝑋𝑋𝑖 =
𝑘

∑
𝑙=1

𝑃𝑖𝑙𝑤𝑤𝑤𝑙 (11.1)

The decomposition of a dataset into its principal components is called principal component
analysis (PCA).

11.2 Analytical PCA Solution

In this subsection, we will use some matrix calculus and eigenvalue theory. To recap the
relevant matrix algebra, the following resources will be useful:

• Eigenvalues and Eigenvectors: https://matrix.svenotto.com/04_furtherconcepts.html
• Derivative rules for vectors: https://matrix.svenotto.com/05_calculus.html

The maximization problem for the first principal component is

max
𝑤𝑤𝑤

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] subject to 𝑤𝑤𝑤′𝑤𝑤𝑤 = 1. (11.2)

The variance of interest can be rewritten as

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝐸[(𝑤𝑤𝑤′(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖]))2]
= 𝐸[(𝑤𝑤𝑤′(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖]))((𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′𝑤𝑤𝑤)]
= 𝑤𝑤𝑤′𝐸[(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′]𝑤𝑤𝑤
= 𝑤𝑤𝑤′Σ𝑤𝑤𝑤

where Σ = 𝑉 𝑎𝑟[𝑋𝑋𝑋𝑖] is the population covariance matrix of 𝑋𝑋𝑋𝑖. Thus, the constrained maxi-
mization problem Equation 11.2 has the Lagrangian

ℒ(𝑤𝑤𝑤, 𝜆) = 𝑤𝑤𝑤′Σ𝑤𝑤𝑤 − 𝜆(𝑤𝑤𝑤′𝑤𝑤𝑤 − 1),

where 𝜆 is a Lagrange multiplier.

Recall the derivative rules for vectors: If 𝐴𝐴𝐴 is a symmetric matrix, then the derivative of 𝑎𝑎𝑎′𝐴𝐴𝐴𝑎𝑎𝑎
with respect to 𝑎𝑎𝑎 is 2𝐴𝐴𝐴𝑎𝑎𝑎. Therefore, the first order condition with respect to 𝑤𝑤𝑤 is

Σ𝑤𝑤𝑤 = 𝜆𝑤𝑤𝑤. (11.3)

The pair (𝜆,𝑤𝑤𝑤) must satisfy the eigenequation Equation 11.3, which is precisely the eigenequa-
tion which defines an eigenvalue-eigenvector pair. The Lagrange multiplier 𝜆 must be an
eigenvalue of Σ and the weight vector 𝑤𝑤𝑤 must be a corresponding eigenvector.
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By the first order condition with respect to 𝜆,

𝑤𝑤𝑤′𝑤𝑤𝑤 = 1,

the eigenvector is normalized to length 1.

Therefore, the variance of interest is

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝑤𝑤𝑤′Σ𝑤𝑤𝑤 = 𝑤𝑤𝑤′(𝜆𝑤𝑤𝑤) = 𝜆. (11.4)

Consequently, 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] must be an eigenvalue of Σ and 𝑤𝑤𝑤 is a corresponding normalized
eigenvector.

The expression 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝜆 is maximized if we use the largest eigenvalue 𝜆 = 𝜆1. Conse-
quently, the variance of the first principal component 𝑃𝑖1 is equal to the largest eigenvalue 𝜆1
of Σ, and the first principal component weight 𝑤𝑤𝑤1 is a normalized eigenvector corresponding
to the eigenvalue 𝜆1.

Analogously, the second principal component weight 𝑤𝑤𝑤2 must also be a normalized eigenvector
of Σ with the additional restriction that it is orthogonal to 𝑤𝑤𝑤1. Therefore, it cannot be an
eigenvector corresponding to the first eigenvalue, and we use the second largest eigenvalue
𝜆 = 𝜆2 to maximize Equation 11.4.

The variance of the second principal component 𝑃𝑖2 is equal to the second largest eigenvalue
𝜆2 of Σ, and the second principal component weight 𝑤𝑤𝑤2 is a corresponding normalized eigen-
vector.

To continue this pattern, the variance of the 𝑙-th principal component 𝑃𝑖𝑙 is equal to the 𝑙-th
largest eigenvalue 𝜆𝑙 of Σ, and the 𝑙-th principal component weight 𝑤𝑤𝑤𝑙 is a corresponding
normalized eigenvector.

Principal Components Solution

Let Σ be the covariance matrix of the 𝑘-variate vector of regressor variables 𝑋𝑋𝑋𝑖, let 𝜆1 ≥
𝜆2 ≥ … ≥ 𝜆𝑘 ≥ 0 be the eigenvalues ordered in descending order of Σ, and let 𝑣𝑣𝑣1, … ,𝑣𝑣𝑣𝑘 be
corresponding orthonormal eigenvectors.

• The principal component weights are 𝑤𝑤𝑤𝑙 = 𝑣𝑣𝑣𝑙 for 𝑙 = 1, … , 𝑘
• The principal components are 𝑃𝑖𝑙 = 𝑣𝑣𝑣′

𝑙𝑋𝑋𝑋𝑖, and they have the properties

𝑉 𝑎𝑟[𝑃𝑖𝑙] = 𝜆𝑙, 𝐶𝑜𝑣(𝑃𝑖𝑙, 𝑃𝑖𝑚) = 0, 𝑙 ≠ 𝑚.

Principal components are uncorrelated because

𝐶𝑜𝑣(𝑃𝑖𝑚, 𝑃𝑖𝑙) = 𝐸[𝑤𝑤𝑤′
𝑚(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′𝑤𝑤𝑤𝑙]

= 𝑤𝑤𝑤′
𝑚Σ𝑤𝑤𝑤𝑙 = 𝜆𝑚𝑤𝑤𝑤′

𝑚𝑤𝑤𝑤𝑙,

where 𝑤𝑤𝑤′
𝑚𝑤𝑤𝑤𝑙 = 1 if 𝑚 = 𝑙 and 𝑤𝑤𝑤′

𝑚𝑤𝑤𝑤𝑙 = 0 if 𝑚 ≠ 𝑙
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11.3 Sample principal components

The covariance matrix Σ = 𝑉 𝑎𝑟[𝑋𝑋𝑋𝑖] is unknown in practice. Instead, we estimate it from the
sample 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛:

Σ̂ΣΣ = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′.

Let 𝜆̂1 ≥ 𝜆̂2 ≥ … , 𝜆̂𝑘 ≥ 0 be the eigenvalues of Σ̂ΣΣ and let ̂𝑣𝑣𝑣1, … , ̂𝑣𝑣𝑣𝑘 be corresponding orthonor-
mal eigenvectors. Then,

• The 𝑙-th sample principal component for observation 𝑖 is

𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖

• The 𝑙-th sample principal component weight vector is

𝑤𝑤𝑤𝑙 = ̂𝑣𝑣𝑣𝑙

• The (adjusted) sample variance of the 𝑙-th sample principal components series 𝑃1𝑙, … , 𝑃𝑛𝑙
is 𝜆̂𝑙, and the sample covariances of different principal components series are zero.

11.4 PCA in R

Let’s compute the sample principal components of the mtcars dataset:

pca = prcomp(mtcars)
## the principal components are arranged by columns
## first few rows of principal components:
pca$x |> head()

PC1 PC2 PC3 PC4 PC5
Mazda RX4 -79.596425 2.132241 -2.153336 -2.7073437 -0.7023522
Mazda RX4 Wag -79.598570 2.147487 -2.215124 -2.1782888 -0.8843859
Datsun 710 -133.894096 -5.057570 -2.137950 0.3460330 1.1061111
Hornet 4 Drive 8.516559 44.985630 1.233763 0.8273631 0.4240145
Hornet Sportabout 128.686342 30.817402 3.343421 -0.5211000 0.7365801
Valiant -23.220146 35.106518 -3.259562 1.4005360 0.8029768

PC6 PC7 PC8 PC9 PC10
Mazda RX4 -0.31486106 -0.098695018 0.07789812 -0.2000092 -0.29008191
Mazda RX4 Wag -0.45343873 -0.003554594 0.09566630 -0.3533243 -0.19283553
Datsun 710 1.17298584 0.005755581 -0.13624782 -0.1976423 0.07634353
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Hornet 4 Drive -0.05789705 -0.024307168 -0.22120800 0.3559844 -0.09057039
Hornet Sportabout -0.33290957 0.106304777 0.05301719 0.1532714 -0.18862217
Valiant -0.08837864 0.238946304 -0.42390551 0.1012944 -0.03769010

PC11
Mazda RX4 -0.1057706
Mazda RX4 Wag -0.1069047
Datsun 710 -0.2668713
Hornet 4 Drive -0.2088354
Hornet Sportabout 0.1092563
Valiant -0.2757693

## the principal components weights
pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5
mpg -0.038118199 0.009184847 0.98207085 0.047634784 -0.08832843
cyl 0.012035150 -0.003372487 -0.06348394 -0.227991962 0.23872590
disp 0.899568146 0.435372320 0.03144266 -0.005086826 -0.01073597
hp 0.434784387 -0.899307303 0.02509305 0.035715638 0.01655194
drat -0.002660077 -0.003900205 0.03972493 -0.057129357 -0.13332765
wt 0.006239405 0.004861023 -0.08491026 0.127962867 -0.24354296

PC6 PC7 PC8 PC9 PC10
mpg -0.143790084 -0.039239174 -2.271040e-02 -0.002790139 0.030630361
cyl -0.793818050 0.425011021 1.890403e-01 0.042677206 0.131718534
disp 0.007424138 0.000582398 5.841464e-04 0.003532713 -0.005399132
hp 0.001653685 -0.002212538 -4.748087e-06 -0.003734085 0.001862554
drat 0.227229260 0.034847411 9.385817e-01 -0.014131110 0.184102094
wt -0.127142296 -0.186558915 -1.561907e-01 -0.390600261 0.829886844

PC11
mpg 0.0158569365
cyl -0.1454453628
disp -0.0009420262
hp 0.0021526102
drat 0.0973818815
wt 0.0198581635

## the standard deviations of the principal components
## are the square roots of the sample eigenvalues
pca$sdev

[1] 136.5330479 38.1480776 3.0710166 1.3066508 0.9064862 0.6635411
[7] 0.3085791 0.2859604 0.2506973 0.2106519 0.1984238
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Principal components are sensitive to the scaling of the data. Consequently, it is recommended
to first scale each variable in the dataset to have mean zero and unit variance: scale(mtcars).
In this case, Σ is the correlation matrix.

pca = mtcars |> scale() |> prcomp()
pca$x |> head()

PC1 PC2 PC3 PC4 PC5
Mazda RX4 -0.64686274 1.7081142 -0.5917309 0.11370221 0.9455234
Mazda RX4 Wag -0.61948315 1.5256219 -0.3763013 0.19912121 1.0166807
Datsun 710 -2.73562427 -0.1441501 -0.2374391 -0.24521545 -0.3987623
Hornet 4 Drive -0.30686063 -2.3258038 -0.1336213 -0.50380035 -0.5492089
Hornet Sportabout 1.94339268 -0.7425211 -1.1165366 0.07446196 -0.2075157
Valiant -0.05525342 -2.7421229 0.1612456 -0.97516743 -0.2116654

PC6 PC7 PC8 PC9 PC10
Mazda RX4 -0.01698737 -0.42648652 0.009631217 -0.14642303 0.06670350
Mazda RX4 Wag -0.24172464 -0.41620046 0.084520213 -0.07452829 0.12692766
Datsun 710 -0.34876781 -0.60884146 -0.585255765 0.13122859 -0.04573787
Hornet 4 Drive 0.01929700 -0.04036075 0.049583029 -0.22021812 0.06039981
Hornet Sportabout 0.14919276 0.38350816 0.160297757 0.02117623 0.05983003
Valiant -0.24383585 -0.29464160 -0.256612420 0.03222907 0.20165466

PC11
Mazda RX4 0.17969357
Mazda RX4 Wag 0.08864426
Datsun 710 -0.09463291
Hornet 4 Drive 0.14761127
Hornet Sportabout 0.14640690
Valiant 0.01954506

pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5 PC6
mpg -0.3625305 0.01612440 -0.22574419 -0.022540255 -0.10284468 -0.10879743
cyl 0.3739160 0.04374371 -0.17531118 -0.002591838 -0.05848381 0.16855369
disp 0.3681852 -0.04932413 -0.06148414 0.256607885 -0.39399530 -0.33616451
hp 0.3300569 0.24878402 0.14001476 -0.067676157 -0.54004744 0.07143563
drat -0.2941514 0.27469408 0.16118879 0.854828743 -0.07732727 0.24449705
wt 0.3461033 -0.14303825 0.34181851 0.245899314 0.07502912 -0.46493964

PC7 PC8 PC9 PC10 PC11
mpg 0.367723810 0.754091423 -0.23570162 -0.13928524 -0.12489563
cyl 0.057277736 0.230824925 -0.05403527 0.84641949 -0.14069544
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disp 0.214303077 -0.001142134 -0.19842785 -0.04937979 0.66060648
hp -0.001495989 0.222358441 0.57583007 -0.24782351 -0.25649206
drat 0.021119857 -0.032193501 0.04690123 0.10149369 -0.03953025
wt -0.020668302 0.008571929 -0.35949825 -0.09439426 -0.56744870

pca$sdev

[1] 2.5706809 1.6280258 0.7919579 0.5192277 0.4727061 0.4599958 0.3677798
[8] 0.3505730 0.2775728 0.2281128 0.1484736

11.5 Variance of principal components

Since the sample principal components are uncorrelated, the total variation in the data is

𝑉 𝑎𝑟[
𝑘

∑
𝑚=1

𝑃𝑖𝑚] =
𝑘

∑
𝑚=1

𝑉 𝑎𝑟[𝑃𝑖𝑚] =
𝑘

∑
𝑚=1

𝜆̂𝑙.

The proportion of variance explained by the 𝑙-th principal component is

𝑉 𝑎𝑟[𝑃𝑖𝑙]
𝑉 𝑎𝑟[∑𝑘

𝑚=1 𝑃𝑖𝑚]
= 𝜆̂𝑙

∑𝑘
𝑚=1 𝜆̂𝑚

A scree plot is useful to see how much each principal component contributes to the total
variation:

pcvar = pca$sdev^2
varexpl = pcvar/sum(pcvar)
varexpl

[1] 0.600763659 0.240951627 0.057017934 0.024508858 0.020313737 0.019236011
[7] 0.012296544 0.011172858 0.007004241 0.004730495 0.002004037

plot(varexpl)
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cumsum(varexpl)

[1] 0.6007637 0.8417153 0.8987332 0.9232421 0.9435558 0.9627918 0.9750884
[8] 0.9862612 0.9932655 0.9979960 1.0000000

The first principal component explains more than 60% of the variation, the first four explain
more than 90% of the variation, the first 6 more than 95%, and the first 9 principal components
more than 99% of the variation.

11.6 Linear regression with principal components

Principal components can be used to estimate the high-dimensional (large 𝑘) linear regression
model

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛.

While ridge and lasso shrink coefficients to prevent overfitting, PCA reduces dimensionality
by transforming variables into orthogonal components before estimation.

Since the principal component weights 𝑤𝑤𝑤1, … ,𝑤𝑤𝑤𝑘 form a basis of ℝ𝑘, the regressors have the
basis representation given by Equation 11.1. Similarly, we can represent the coefficient vector
in terms of the principal component basis:

𝛽𝛽𝛽 =
𝑘

∑
𝑙=1

𝜃𝑙𝑤𝑤𝑤𝑙, 𝜃𝑙 = 𝑤𝑤𝑤′
𝑙𝛽𝛽𝛽. (11.5)
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Inserting in the regression function gives

𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 =

𝑘
∑
𝑙=1

𝑋𝑋𝑋′
𝑖𝑤𝑤𝑤𝑙⏟

=𝑃𝑖𝑙

𝜃𝑙,

and the regression equation becomes

𝑌𝑖 =
𝑘

∑
𝑙=1

𝑃𝑖𝑙𝜃𝑙 + 𝑢𝑖. (11.6)

This regression equation is convenient because the regressors 𝑃𝑖𝑙 are uncorrelated, and OLS
estimates for 𝜃𝑙 can be inserted back into Equation 11.5 to get an estimate for 𝛽𝛽𝛽.
When 𝑘 is large, this approach is still prone to overfitting. The 𝑘 principal components of 𝑋𝑋𝑋𝑖
explain 100% of its variance, but it may be reasonable to select a smaller number of principal
components 𝑝 < 𝑘 that explain 95% or 99% of the variance.

The remaining 𝑘 − 𝑝 principal components explain only 5% or 1% of the variance. The idea
is that we truncate the model by assuming that the remaining principal components contain
only noise that is uncorrelated with 𝑌𝑖.

Assumption (PC): 𝐸[𝑃𝑖𝑚𝑌𝑖] = 0 for all 𝑚 = 𝑝 + 1, … , 𝑘.
This assumption implies that the components with indices larger than 𝑝 contribute no system-
atic predictive power for 𝑌𝑖, and hence only introduce noise.

Because the principal components are uncorrelated, we have 𝜃𝑙 = 𝐸[𝑌𝑖𝑃𝑖𝑙]/𝐸[𝑃 2
𝑖𝑙], and, there-

fore 𝜃𝑚 = 0 for 𝑚 = 𝑝 + 1, … , 𝑘. Consequently,

𝛽𝛽𝛽 =
𝑝

∑
𝑙=1

𝜃𝑙𝑤𝑤𝑤𝑙, (11.7)

and Equation 11.6 becomes a factor model with 𝑝 factors:

𝑌𝑖 =
𝑝

∑
𝑙=1

𝜃𝑙𝑃𝑖𝑙 + 𝑢𝑖 = 𝑃𝑃𝑃 ′
𝑖𝜃𝜃𝜃 + 𝑢𝑖,

where 𝑃𝑃𝑃 𝑖 = (𝑃𝑖1, … , 𝑃𝑖𝑝)′ and 𝜃𝜃𝜃 = (𝜃1, … , 𝜃𝑝)′. The least squares estimator of 𝜃𝜃𝜃 using the
regressors 𝑃𝑃𝑃 𝑖, 𝑖 = 1, … 𝑛 can then be inserted to Equation 11.7 to obtain an estimate for 𝛽𝛽𝛽.
In practice, the principal components are unknown and must be replaced by the first 𝑝 sample
principal components

𝑃𝑃𝑃 𝑖 = (𝑃𝑖1, … , 𝑃𝑖𝑝)′, 𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖.

The feasible least squares estimator for 𝜃 is

̂𝜃𝜃𝜃 = ( ̂𝜃1, … , ̂𝜃𝑝)′ = (
𝑛

∑
𝑖=1

𝑃𝑃𝑃 𝑖𝑃𝑃𝑃
′
𝑖)

−1 𝑛
∑
𝑖=1

𝑃𝑃𝑃 𝑖𝑌𝑖,
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and the principal components estimator for 𝛽𝛽𝛽 is

̂𝛽𝛽𝛽𝑝𝑐 =
𝑝

∑
𝑙=1

̂𝜃𝑙𝑤𝑤𝑤𝑙.

11.7 Selecting the number of factors

To select the number of principal components, one practical approach is to choose those that
explain a pre-specified percentage (90-99%) of the total variance.

Y = mtcars$mpg
X = model.matrix(mpg ~., data = mtcars)[,-1] |> scale()
## principal component analysis
pca = prcomp(X)
P = pca$x #full matrix of all principal components
## variance explained
eigenval = pca$sdev^2
varexpl = eigenval/sum(eigenval)
cumsum(varexpl)

[1] 0.5760217 0.8409861 0.9007075 0.9276582 0.9498832 0.9708950 0.9841870
[8] 0.9922551 0.9976204 1.0000000

The first four principal components explain more than 92% of the variance, and the first seven
more than 98%.

Another method involves creating a scree plot to display the eigenvalues (variances) for each
principal component and identifying the point where the eigenvalues sharply drop (elbow
point).

plot(eigenval)
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We find an elbow at four principal components.

Selecting the number of principal components, similar to shrinkage estimation, involves bal-
ancing variance and bias. If the Assumption (PC) holds, the PC estimator is unbiased; if it
doesn’t, a small bias is introduced. Increasing the number of components 𝑝 reduces bias but
increases variance, while decreasing 𝑝 reduces variance but increases bias.

Similarly to the shrinkage parameter in ridge and lasso estimation, the number of factors 𝑝
can be treated as a tuning parameter. We can use 𝑚-fold cross validation to select 𝑝 such that
the MSE is minimized.

The caret package in R provides a convenient way to perform cross-validation and select the
optimal number of principal components.

set.seed(111)
## PCR 10-fold cross-validation
library(caret)

Lade nötiges Paket: ggplot2

Lade nötiges Paket: lattice

myfunc.cvpca = function(p){
data_pca = data.frame(Y, P[,1:p])
cv = train(

Y ~ ., data = data_pca,
method = "lm",
metric = "RMSE",
trControl = trainControl(method = "cv", number = 10)
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)
return(cv$results$RMSE)

}
# Iterate function crossval over ncomp = 1, ..., maxcomp
maxcomp = 10 # select not more than number of variables (for data_small select <=4)
cv.pca = sapply(1:maxcomp, myfunc.cvpca) # sapply is useful for iterating over function arguments ncomp

# Find the number of components with the lowest RMSPE
which.min(cv.pca)

[1] 5

plot(cv.pca, type="l")
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The 10-fold cross validation method suggests to use 5 principal components.

11.8 R-codes

metrics-sec11.R

190


