11 Principal Components

If two regressors are highly correlated, we can typically drop one of the regressors because it
mostly contains the same information.

The idea of principal component regression is to exploit the correlations among the regressors
to reduce their number while retaining as much of the original information as possible.

11.1 Principal Components

The principal components (PC) are linear combinations of the regressor variables that capture
as much of the variation in the original variables as possible.

Principal Components

Let X, be a k-variate vector of regressor variables.

The first principal component is P;; = w|X,, where w, satisfies
w, = argmax,,, , Var{w X,]

The second principal component is P, = w5, X, where w, satisfies

Wy = argmax ,q,,—1 Varfw' X,;]
w' w, =0
The [-th principal component is P;; = w;X;, where w, satisfies

1

w, = argmax ww—1 Varw' X,]
ww,=.=w'w, ;=0

A k-variate regressor vector X, has k principal components P;,, ..., P;. and k corresponding
weights or principal component loadings w,,w,, ... ,w,.

By definition, the principal components are descendingly ordered by their variance:
Var[P;;] > Var[P,] > ... > Var[P,,] > 0

The principal component weights are orthonormal:

, 1 ifi=jy,
ww; = e
/ 0 ifi#j.
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Moreover, w;, w,, ... ,w; form an orthonormal basis for the k-dimensional vector space R¥. The
regressor vector admits the following decomposition into its principal components:

k
X; =Y Pyw, (11.1)
=

The decomposition of a dataset into its principal components is called principal component
analysis (PCA).

11.2 Analytical PCA Solution

In this subsection, we will use some matrix calculus and eigenvalue theory. To recap the
relevant matrix algebra, the following resources will be useful:

o Eigenvalues and Eigenvectors: https://matrix.svenotto.com/04_ furtherconcepts.html
o Derivative rules for vectors: https://matrix.svenotto.com/05_ calculus.html

The maximization problem for the first principal component is

max Var[w' X;] subject tow'w = 1. (11.2)

The variance of interest can be rewritten as
Varlw'X;] = E[(w'(X; — E[X;]))?]
= E[(w'(X; — E[X;])(X; — E[X;])'w)]
=w E[(X, — EX,))(X, — E[X,]) ]w

=w'Xw

where ¥ = Var[X,] is the population covariance matrix of X,. Thus, the constrained maxi-
mization problem Equation 11.2 has the Lagrangian

L(w,\) =w'Sw — A(ww—1),

where A is a Lagrange multiplier.

Recall the derivative rules for vectors: If A is a symmetric matrix, then the derivative of a’ Aa
with respect to a is 2Aa. Therefore, the first order condition with respect to w is

Yw = \w. (11.3)

The pair (A, w) must satisfy the eigenequation Equation 11.3, which is precisely the eigenequa-
tion which defines an eigenvalue-eigenvector pair. The Lagrange multiplier A must be an
eigenvalue of ¥ and the weight vector w must be a corresponding eigenvector.
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By the first order condition with respect to A,
ww =1,

the eigenvector is normalized to length 1.

Therefore, the variance of interest is
Varlw X;] = w'w = w' (Aw) = \. (11.4)

Consequently, Var[w’X,] must be an eigenvalue of ¥ and w is a corresponding normalized
eigenvector.

The expression Varfw'X,;] = A is maximized if we use the largest eigenvalue A = \;. Conse-
quently, the variance of the first principal component P;; is equal to the largest eigenvalue \;
of ¥, and the first principal component weight w, is a normalized eigenvector corresponding
to the eigenvalue \;.

Analogously, the second principal component weight w, must also be a normalized eigenvector
of ¥ with the additional restriction that it is orthogonal to w,;. Therefore, it cannot be an
eigenvector corresponding to the first eigenvalue, and we use the second largest eigenvalue
A = Ay to maximize Equation 11.4.

The variance of the second principal component P;, is equal to the second largest eigenvalue
Ay of X, and the second principal component weight w, is a corresponding normalized eigen-
vector.

To continue this pattern, the variance of the [-th principal component P;; is equal to the [-th
largest eigenvalue \; of X, and the [-th principal component weight w; is a corresponding
normalized eigenvector.

Principal Components Solution

Let ¥ be the covariance matrix of the k-variate vector of regressor variables X;, let A\; >
Ay > ... > A, > 0 be the eigenvalues ordered in descending order of ¥, and let v, ..., v, be
corresponding orthonormal eigenvectors.

o The principal component weights are w; =v; for [ =1, ...,k
o The principal components are P;; = v;X,, and they have the properties

Var[Pyl =, Cov(Py, Py,) =0, 1#m.

1

Principal components are uncorrelated because

Cov(P,

m?

Py) = Elw,,,(X; — EIX;])(X,; — E[X,])w)]

w, Yw, =\, w, w,,

/
m

where w),w; =1 if m =1 and w),w;, =0 if m # 1
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11.3 Sample principal components

The covariance matrix ¥ = Var[X,] is unknown in practice. Instead, we estimate it from the
sample X ,..., X

LS, - X)X, - X

=1

Y=

n—1
Let A, > Ay > ..., A, > 0 be the eigenvalues of ¥ and let V4, ..., be corresponding orthonor-
mal eigenvectors. Then,
e The [-th sample principal component for observation ¢ is
ﬁi = @;X i
e The I-th sample principal component weight vector is
w, =7,

—~

o The (adjusted) sample variance of the [-th sample principal components series ﬁl Loy P
is \;, and the sample covariances of different principal components series are zero.

11.4 PCAin R

Let’s compute the sample principal components of the mtcars dataset:

pca = prcomp(mtcars)

## the principal components are arranged by columns
## first few rows of principal components:

pca$x |> head()

PC1 PC2 PC3 pPC4 PC5
Mazda RX4 -79.596425 2.132241 -2.153336 -2.7073437 -0.7023522
Mazda RX4 Wag -79.598570 2.147487 -2.215124 -2.1782888 -0.8843859
Datsun 710 -133.894096 -5.057570 -2.137950 0.3460330 1.1061111
Hornet 4 Drive 8.516559 44.985630 1.233763 0.8273631 0.4240145
Hornet Sportabout 128.686342 30.817402 3.343421 -0.5211000 0.7365801
Valiant -23.220146 35.106518 -3.259562 1.4005360 0.8029768

pPCé PC7 PC8 PC9 PC10
Mazda RX4 -0.31486106 -0.098695018 0.07789812 -0.2000092 -0.29008191
Mazda RX4 Wag -0.45343873 -0.003554594 0.09566630 -0.3533243 -0.19283553
Datsun 710 1.17298584 0.005755581 -0.13624782 -0.1976423 0.07634353
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Hornet 4 Drive -0.05789705 -0.024307168 -0.22120800 0.3559844 -0.09057039

Hornet Sportabout -0.33290957 0.106304777 0.05301719 0.1532714 -0.18862217

Valiant -0.08837864 0.238946304 -0.42390551 0.1012944 -0.03769010
PC11

Mazda RX4 -0.1057706

Mazda RX4 Wag -0.1069047

Datsun 710 -0.2668713

Hornet 4 Drive -0.2088354

Hornet Sportabout 0.1092563

Valiant -0.2757693

## the principal components weights
pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5
mpg -0.038118199 0.009184847 0.98207085 .047634784 -0.08832843
cyl 0.012035150 -0.003372487 -0.06348394 -0.227991962 0.23872590
disp 0.899568146 0.435372320 0.03144266 -0.005086826 -0.01073597
hp 0.434784387 -0.899307303 0.02509305 .035715638 0.01655194
drat -0.002660077 -0.003900205 0.03972493 -0.057129357 -0.13332765
wt 0.006239405 0.004861023 -0.08491026 .127962867 -0.24354296
PC6 PC7 PC8 PC9 PC10
mpg -0.143790084 -0.039239174 -2.271040e-02 -0.002790139 0.030630361
cyl -0.793818050 0.425011021 1.890403e-01 0.042677206 0.131718534
disp 0.007424138 0.000582398 5.841464e-04 0.003532713 -0.005399132
hp 0.001653685 -0.002212538 -4.748087e-06 -0.003734085 0.001862554
drat 0.227229260 0.034847411 9.385817e-01 -0.014131110 0.184102094
wt  -0.127142296 -0.186558915 -1.561907e-01 -0.390600261 0.829886844
PC11
mpg 0.0158569365
cyl -0.1454453628
disp -0.0009420262
hp 0.0021526102
drat 0.0973818815
wt 0.0198581635
## the standard deviations of the principal components
## are the square roots of the sample eigenvalues
pca$sdev
[1] 136.5330479 38.1480776 3.0710166 1.3066508 0.9064862 0.6635411
[7] 0.3085791  0.2859604  0.2506973 0.2106519  0.1984238
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Principal components are sensitive to the scaling of the data. Consequently, it is recommended
to first scale each variable in the dataset to have mean zero and unit variance: scale(mtcars).
In this case, ¥ is the correlation matrix.

pca = mtcars

pca$x |> head()

Mazda RX4

Mazda RX4 Wag
Datsun 710

Hornet 4 Drive
Hornet Sportabout

Valiant

Mazda RX4

Mazda RX4 Wag
Datsun 710

Hornet 4 Drive
Hornet Sportabout

Valiant

Mazda RX4
Mazda RX4 Wag
Datsun 710
Hornet 4 Drive
Hornet Sportabout 0.14640690

Valiant

|> scale()

PC1
.64686274
.61948315

.055625342
PC6

.34876781
0.01929700
0.14919276
.24383585

PC11
0.17969357
0.08864426
.09463291
0.14761127

0.01954506

pca$rotation |> head()

mpg -O0.
cyl O.
disp O.
hp 0.
drat -0.
wt 0.
mpg O.
cyl O.

PC1

3625305 0.
3739160 O.
.04932413
3300569 O.
2941514 0.
.14303825

3681852

3461033
PC7

PC2
01612440
04374371

24878402
27469408

PC8
367723810 0.754091423
057277736 0.230824925

. 73562427 -0.
.30686063 -2.
1.94339268 -0.
-2.

.01698737 -0.
.24172464 -0.
-0.
-0.

-0.

.22574419
.17531118
.06148414
.14001476
.16118879
.34181851

|> prcomp()

PC2
1.7081142
1.52566219
1441501
3258038
7425211
7421229

PC7
42648652
41620046
60884146
04036075
0.38350816
29464160

PC3

PC9
-0.23570162
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PC3
.5917309
.3763013
.2374391
.1336213
.1165366
0.1612456

P
0.0096312
0.0845202

.58525657
0.0495830
0.1602977
.2566124

pPC4
.022540255
.002591838
.256607885
.067676157
.854828743
.245899314
PC

0.

0.
-0.
-0.

0.
-0.
C8
17
13
65
29
57
20

10

11370221
19912121 1.
24521545
50380035
07446196
97516743

.10284468
.056848381
.393995630
.54004744
.07732727
.07502912

PC4

PC9
.14642303
.07452829
0.13122859
.22021812
0.02117623
0.03222907

PC5

PC11

-0.13928524 -0.12489563
-0.05403527 0.84641949 -0.14069544

PC5

0.9455234
0166807
.3987623
.5492089
.2075157
.2116654

PC10
0.06670350
0.12692766
.04573787
0.06039981
0.05983003
0.20165466

PC6

.10879743
.16855369
.33616451
.07143563
. 24449705
-0.

46493964



disp 0.214303077 -0.001142134 -0.19842785 -0.04937979 0.66060648
hp -0.001495989 0.222358441 0.57583007 -0.24782351 -0.25649206
drat 0.021119857 -0.032193501 0.04690123 0.10149369 -0.03953025
wt  -0.020668302 0.008571929 -0.35949825 -0.09439426 -0.56744870

pca$sdev

[1] 2.5706809 1.6280258 0.7919579 0.5192277 0.4727061 0.4599958 0.3677798
[8] 0.3505730 0.2775728 0.2281128 0.1484736

11.5 Variance of principal components

Since the sample principal components are uncorrelated, the total variation in the data is

k k k
Var[ zzjlﬁm] = ;Var[ﬁim] = 23\1

The proportion of variance explained by the I-th principal component is

VGT[EZ] Al

k =y - k N
Var[zmzl le] Zmzl Am

A scree plot is useful to see how much each principal component contributes to the total
variation:

pcvar = pca$sdev™2
varexpl = pcvar/sum(pcvar)
varexpl

[1] 0.600763659 0.240951627 0.057017934 0.024508858 0.020313737 0.019236011
[7] 0.012296544 0.011172858 0.007004241 0.004730495 0.002004037

plot(varexpl)
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cumsum(varexpl)

[1] 0.6007637 0.8417153 0.8987332 0.9232421 0.9435558 0.9627918 0.9750884
[8] 0.9862612 0.9932655 0.9979960 1.0000000

The first principal component explains more than 60% of the variation, the first four explain
more than 90% of the variation, the first 6 more than 95%, and the first 9 principal components
more than 99% of the variation.

11.6 Linear regression with principal components

Principal components can be used to estimate the high-dimensional (large k) linear regression
model
Y,=XB+u;, i=1,..,n

While ridge and lasso shrink coefficients to prevent overfitting, PCA reduces dimensionality
by transforming variables into orthogonal components before estimation.

Since the principal component weights wy, ..., w, form a basis of R¥, the regressors have the
basis representation given by Equation 11.1. Similarly, we can represent the coefficient vector
in terms of the principal component basis:

k
B=Y 6w, 0,=uwp. (11.5)
=1
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Inserting in the regression function gives

——
Pil

k
XiB=> Xw0,
=1 _
and the regression equation becomes
k
Y, =Y Py +u, (11.6)
=1

This regression equation is convenient because the regressors P;, are uncorrelated, and OLS

estimates for 6, can be inserted back into Equation 11.5 to get an estimate for B.

When £ is large, this approach is still prone to overfitting. The k principal components of X,
explain 100% of its variance, but it may be reasonable to select a smaller number of principal
components p < k that explain 95% or 99% of the variance.

The remaining k — p principal components explain only 5% or 1% of the variance. The idea
is that we truncate the model by assuming that the remaining principal components contain
only noise that is uncorrelated with Y.

Assumption (PC): E[P,, Y, =0forallm=p+1,... k.
This assumption implies that the components with indices larger than p contribute no system-

atic predictive power for Y;, and hence only introduce noise.

Because the principal components are uncorrelated, we have 6, = E[Y;P;]/E[P3], and, there-
fore §,, = 0 for m =p+ 1, ..., k. Consequently,

P
8= o, (11.7)
=1
and Equation 11.6 becomes a factor model with p factors:

P
}/;Zzelpil+ui:P;0+uiv
=1

where P, = (P;,...,P;,)" and 8 = (0,,...,0,)". The least squares estimator of 8 using the

regressors P;, i = 1,...n can then be inserted to Equation 11.7 to obtain an estimate for f.

In practice, the principal components are unknown and must be replaced by the first p sample
principal components

—~ —~ —

P,=(P,,..,P,), P,=uX,

K2 K3 K3

The feasible least squares estimator for 6 is

n ’ -1 n -
é: (917 ...7ép)/ — (Zﬁlﬁl> PZKJ
=1 =1

=
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and the principal components estimator for 8 is
~ p ~
B pe Z 0w,
=1

11.7 Selecting the number of factors

To select the number of principal components, one practical approach is to choose those that
explain a pre-specified percentage (90-99%) of the total variance.

Y = mtcars$mpg

X = model.matrix(mpg ~., data = mtcars)[,-1] |> scale()
## principal component analysis

pca = prcomp(X)

P = pca$x #full matrix of all principal components

## variance explained

eigenval = pca$sdev”2

varexpl = eigenval/sum(eigenval)

cumsum(varexpl)

[1] 0.5760217 0.8409861 0.9007075 0.9276582 0.9498832 0.9708950 0.9841870
[8] 0.9922551 0.9976204 1.0000000

The first four principal components explain more than 92% of the variance, and the first seven
more than 98%.

Another method involves creating a scree plot to display the eigenvalues (variances) for each
principal component and identifying the point where the eigenvalues sharply drop (elbow
point).

plot(eigenval)
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We find an elbow at four principal components.

Selecting the number of principal components, similar to shrinkage estimation, involves bal-
ancing variance and bias. If the Assumption (PC) holds, the PC estimator is unbiased; if it
doesn’t, a small bias is introduced. Increasing the number of components p reduces bias but
increases variance, while decreasing p reduces variance but increases bias.

Similarly to the shrinkage parameter in ridge and lasso estimation, the number of factors p
can be treated as a tuning parameter. We can use m-fold cross validation to select p such that
the MSE is minimized.

The caret package in R provides a convenient way to perform cross-validation and select the
optimal number of principal components.

set.seed(111)
## PCR 10-fold cross-valtidation
library(caret)

Lade nétiges Paket: ggplot2

Lade nétiges Paket: lattice

myfunc.cvpca = function(p){
data_pca = data.frame(Y, P[,1:p])
cv = train(
Y ~ ., data = data_pca,
method = "1m",
"RMSE",
trControl = trainControl(method = "cv", number = 10)

metric
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)
return(cv$results$RMSE)
}
# Iterate function crossval over ncomp = 1, ..., maxcomp
maxcomp = 10 # select not more than number of variables (for data_small select <=4)
cv.pca = sapply(1l:maxcomp, myfunc.cvpca) # sapply is useful for iterating over function argu

# Find the number of components with the lowest RMSPE
which.min(cv.pca)

(1] 5

plot(cv.pca, type="1")
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The 10-fold cross validation method suggests to use 5 principal components.

11.8 R-codes

metrics-secl1.R
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