
2 Summary Statistics

In statistics, a univariate dataset 𝑌1, … , 𝑌𝑛 or a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is often called
a sample. It typically represents observations collected from a larger population. The sample
distribution indicates how the sample values are distributed across possible outcomes.

Summary statistics, such as the sample mean and sample variance, provide a concise rep-
resentation of key characteristics of the sample distribution. These summary statistics are
related to the sample moments of a dataset.

2.1 Sample moments

The 𝑟-th sample moment about the origin (also called the 𝑟-th raw moment) is defined as

𝑌 𝑟 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 .

Mean

For example, the first sample moment (𝑟 = 1) is the sample mean (arithmetic mean):

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖.

The sample mean is the most common measure of central tendency. In i.i.d. samples, it
converges in probability to the expected value as sample size grows (law of large numbers).
This makes it a consistent estimator for the population mean:

𝑌
𝑝

→ 𝜇 = 𝐸[𝑌 ] as 𝑛 → ∞.

To compute the sample mean of a vector Y in R, use mean(Y) or alternatively sum(Y)/length(Y).
The r-th sample moment can be calculated with mean(Y^r).
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2.2 Central sample moments

The 𝑟-th central sample moment is the average of the 𝑟-th powers of the deviations from
the sample mean:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑟

Variance

For example, the second central moment (𝑟 = 2) is the sample variance:

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑌 2 − 𝑌 2.

The sample variance measures the spread or dispersion of the data around the sample mean.
It is a consistent estimator for the population variance

𝜎2 = 𝑉 𝑎𝑟(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])2] = 𝐸[𝑌 2] − 𝐸[𝑌 ]2

if the sample is i.i.d.

Standard Deviation

The sample standard deviation is the square root of the sample variance:

𝜎̂𝑌 = √𝜎̂2
𝑌 = √ 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = √𝑌 2 − 𝑌 2

It quantifies the typical deviation of data points from the sample mean in the original units of
measurement. It is a consistent estimator for the population standard deviation

𝑠𝑑(𝑌 ) = √𝑉 𝑎𝑟(𝑌 ).

2.3 Adjustments

Degrees of Freedom

When computing the sample mean 𝑌 , we have 𝑛 degrees of freedom because all data points
𝑌1, … , 𝑌𝑛 can vary freely.
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When computing variances, we take the sample mean of the squared deviations

(𝑌1 − 𝑌 )2, … , (𝑌𝑛 − 𝑌 )2.

These elements cannot vary freely because 𝑌 is computed from the same sample and implies
the constraint

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 ) = 0.

This means that the deviations are connected by this equation and are not all free to vary.
Knowing the first 𝑛 − 1 of the deviations determines the last one:

(𝑌𝑛 − 𝑌 ) = −
𝑛−1
∑
𝑖=1

(𝑌𝑖 − 𝑌 ).

Therefore, only 𝑛 − 1 deviations can vary freely, which results in 𝑛 − 1 degrees of freedom for
the sample variance.

Adjusted Sample Variance

Because ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 effectively contains only 𝑛 − 1 freely varying summands, it is common

to account for this fact. The adjusted sample variance uses 𝑛 − 1 in the denominator:

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

The adjusted sample variance relates to the unadjusted sample variance as:

𝑠2
𝑌 = 𝑛

𝑛 − 1𝜎̂2
𝑌 .

The adjusted sample standard deviation is:

𝑠𝑌 = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = √ 𝑛
𝑛 − 1𝜎̂𝑌 .

To compute the sample variance and sample standard deviation of a vector Y in R, use
mean(Y^2)-mean(Y)^2 and sqrt(mean(Y^2)-mean(Y)^2), respectively. The built-in func-
tions var(Y) and sd(Y) compute their adjusted versions.

Let’s compute the sample means, sample variances, and adjusted sample variances of some
variables from the cps dataset.
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cps = read.csv("cps.csv")
exper = cps$experience
wage = cps$wage
edu = cps$education
fem = cps$female

## Sample mean
c(mean(exper), mean(wage), mean(edu), mean(fem))

[1] 22.2071065 23.9026619 13.9246187 0.4257223

## Sample variance
c(mean(exper^2)- mean(exper)^2, mean(wage^2) - mean(wage)^2,
mean(edu^2) - mean(edu)^2, mean(fem^2) - mean(fem)^2)

[1] 136.1098206 428.9398785 7.5318408 0.2444828

## Adjusted sample variance
c(var(exper), var(wage), var(edu), var(fem))

[1] 136.1125031 428.9483320 7.5319892 0.2444876

While the unadjusted version (using 𝑛 in the denominator) yields a lower variance, it remains
biased in finite samples. In contrast, the adjusted version (using 𝑛 − 1) eliminates this bias at
the expense of slightly higher variance, illustrating a bias–variance tradeoff. In large samples,
however, the difference becomes negligible and both estimators yield practically the same
results.

2.4 Density estimation

A continuous random variable 𝑌 is characterized by a continuously differentiable CDF

𝐹(𝑎) = 𝑃(𝑌 ≤ 𝑎).

The derivative is known as the probability density function (PDF), defined as

𝑓(𝑎) = 𝐹 ′(𝑎).

There are several methods to estimate this density function from sample data.
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Histogram

Histograms offer an intuitive visual representation of the sample distribution of a variable. A
histogram divides the data range into 𝐵 bins, each of equal width ℎ, and counts the number
of observations 𝑛𝑗 within each bin. The height of the histogram at 𝑎 in the 𝑗-th bin is

̂𝑓(𝑎) = 𝑛𝑗
𝑛ℎ.

The histogram is the plot of these heights, displayed as rectangles, with their area normalized
so that the total area equals 1.

par(mfrow = c(2,2))
hist(exper, probability = TRUE)
hist(wage, probability = TRUE)
hist(edu, probability = TRUE)
hist(fem, probability = TRUE)
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Running hist(wage, probability=TRUE) automatically selects a suitable number of bins 𝐵.
Note that hist(wage) will plot absolute frequencies instead of relative ones. The shape of a
histogram depends on the choice of 𝐵. You can experiment with different values using the
breaks option:

par(mfrow = c(1,2))
hist(wage, probability = TRUE, breaks = 3)
hist(wage, probability = TRUE, breaks = 300)
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Histogram of wage
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Kernel density estimator

Suppose we want to estimate the wage density at 𝑎 = 22 and consider the histogram density
estimate with ℎ = 10. It is based on the frequency of observations in the interval [20, 30)
which is a skewed window about 𝑎 = 22.
It seems more sensible to center the window at 22, for example [17, 27) instead of [20, 30). It
also seems sensible to give more weight to observations close to 22 and less to those at the
edge of the window.

This idea leads to the kernel density estimator of 𝑓(𝑎), which is a smooth version of the
histogram:

̂𝑓(𝑎) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾(𝑋𝑖 − 𝑎
ℎ ).

Here, 𝐾(𝑢) represents a weighting function known as a kernel function, and ℎ > 0 is the
bandwidth. A common choice for 𝐾(𝑢) is the Gaussian kernel:

𝐾(𝑢) = 𝜙(𝑢) = 1√
2𝜋 exp(−𝑢2/2).

par(mfrow = c(1,2))
plot(density(wage))
hist(wage, probability=TRUE)
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The density() function in R automatically selects an optimal bandwidth, but it also allows
for manual bandwidth specification via density(wage, bw = your_bandwidth).

2.5 Higher Moments

The r-th standardized sample moment is the central moment normalized by the sample
standard deviation raised to the power of 𝑟. It is defined as:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌
𝜎̂𝑌

)
𝑟

Skewness

For example, the third standardized sample moment (𝑟 = 3) is the sample skewness:

ŝke(𝑌 ) = 1
𝑛𝜎̂3

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )3.

The skewness is a measure of asymmetry around the mean. A positive skewness indicates that
the distribution has a longer or heavier tail on the right side (right-skewed), while a negative
skewness indicates a longer or heavier tail on the left side (left-skewed). A perfectly symmetric
distribution, such as the normal distribution, has a skewness of 0.

For i.i.d. samples, the sample skewness is a consistent estimator for the population skewness

𝑠𝑘𝑒(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])3]
𝑠𝑑(𝑌 )3 .
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To compute the sample skewness in R, use:

mean((Y-mean(Y))^3)/(mean(Y^2)-mean(Y)^2)^(3/2)

For convenience, you can use the skewness(Y) function from the moments package, which
performs the same calculation.

library(moments)
c(skewness(exper), skewness(wage), skewness(edu), skewness(fem))

[1] 0.1862605 4.3201570 -0.2253251 0.3004446

Wages are right-skewed because a few very rich individuals earn much more than the many
with low to medium incomes. The other variables do not indicate any pronounced skewness.

Kurtosis

The sample kurtosis is the fourth standardized sample moment (𝑟 = 4), commonly denoted
as 𝑔2:

k̂ur(𝑌 ) = 1
𝑛𝜎̂4

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )4.

Kurtosis measures the “tailedness” or heaviness of the tails of a distribution and can indicate
the presence of extreme outliers. The reference value of kurtosis is 3, which corresponds to
the kurtosis of a normal distribution. Values greater than 3 suggest heavier tails, while values
less than 3 indicate lighter tails.

For i.i.d. samples, the sample kurtosis is a consistent estimator for the population kurtosis

𝑘𝑢𝑟(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])4]
𝑉 𝑎𝑟(𝑌 )2 .
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To compute the sample kurtosis in R, use:

mean((Y-mean(Y))^4)/(mean((Y-mean(Y))^2))^2

For convenience, you can use the kurtosis(Y) function from the moments package, which
performs the same calculation.

c(kurtosis(exper), kurtosis(wage), kurtosis(edu), kurtosis(fem))

[1] 2.374758 30.370331 4.498264 1.090267

The variable wage exhibits heavy tails due to a few super-rich outliers in the sample. In
contrast, fem has light tails because there are approximately equal numbers of women and
men.
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The plots display histograms of two standardized datasets (both have a sample mean of 0 and
a sample variance of 1). The left dataset has a normal sample kurtosis (around 3), while the
right dataset has a high sample kurtosis with heavier tails.

Kurtosis not only measures the heaviness of a distribution’s tails but also its peakedness. A
high kurtosis indicates that data are more concentrated around the mean and in the extremes,
meaning that extreme values occur more frequently than they would in a normal distribution.

In contrast, a low kurtosis signifies a flatter peak with lighter tails, suggesting fewer extreme
observations. In finance and risk management, these differences are crucial because they affect
the probability of rare but impactful events.

Some statistical software reports the excess kurtosis, which is defined as 𝑘𝑢𝑟 −3. This shifts
the reference value to 0 (instead of 3), making it easier to interpret: positive values indicate
heavier tails than the normal distribution, while negative values indicate lighter tails. For
example, the normal distribution has an excess kurtosis of 0.
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2.6 Logarithmic Transformations

Right-skewed, heavy-tailed variables are common in real-world datasets, such as income levels,
wealth accumulation, property values, insurance claims, and social media follower counts. A
common transformation to reduce skewness and kurtosis in data is to use the natural loga-
rithm:

par(mfrow = c(2,2))
hist(wage, probability = TRUE, breaks = 20, xlim = c(0,200))
hist(log(wage), probability = TRUE, breaks = 50, xlim = c(-1, 6))
plot(density(wage), xlim = c(0,200))
plot(density(log(wage)), xlim = c(-1, 6))
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c(skewness(wage), kurtosis(wage))

[1] 4.320157 30.370331
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c(skewness(log(wage)), kurtosis(log(wage)))

[1] -0.6990539 11.8566367

In econometrics, statistics, and many programming languages including R, log(⋅) is commonly
used to denote the natural logarithm (base e).

Note: On a pocket calculator, use LN to calculate the natural logarithm log(⋅) = log𝑒(⋅). If
you use LOG, you will calculate the logarithm with base 10, i.e., log10(⋅), which will give you
a different result. The relationship between these logarithms is log10(𝑥) = log𝑒(𝑥)/ log𝑒(10).

2.7 Bivariate Statistics

For a bivariate sample (𝑌1, 𝑍1), … , (𝑌𝑛, 𝑍𝑛), we can compute cross moments that describe the
relationship between the two variables. The (𝑟, 𝑠)-th sample cross moment is defined as:

𝑌 𝑟𝑍𝑠 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 𝑍𝑠

𝑖 .

The most important cross moment is the (1, 1)-th sample cross moment, or simply the first
sample cross moment:

𝑌 𝑍 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖𝑍𝑖.

The central sample cross moments are defined as:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑟(𝑍𝑖 − 𝑍)𝑠.

Covariance and Correlation

The (1, 1)-th central sample cross moment leads to the sample covariance:

𝜎̂𝑌 𝑍 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍) = 𝑌 𝑍 − 𝑌 ⋅ 𝑍.

Similar to the univariate case, we can define the adjusted sample covariance:

𝑠𝑌 𝑍 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍) = 𝑛
𝑛 − 1𝜎̂𝑌 𝑍.
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The sample correlation coefficient is the standardized sample covariance:

𝑟𝑌 𝑍 = 𝑠𝑌 𝑍
𝑠𝑌 𝑠𝑍

= ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍)

√∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2√∑𝑛

𝑖=1(𝑍𝑖 − 𝑍)2
= 𝜎̂𝑌 𝑍

𝜎̂𝑌 𝜎̂𝑍
.

If the sample is i.i.d., both 𝜎̂𝑌 𝑍 and 𝑠𝑌 𝑍 are consistent estimators for the population covari-
ance

𝜎𝑌 𝑍 = 𝐶𝑜𝑣(𝑌 , 𝑍) = 𝐸[(𝑌 − 𝐸[𝑌 ])(𝑍 − 𝐸[𝑍])].
The adjusted sample covariance 𝑠𝑌 𝑍 is unbiased, while 𝜎̂𝑌 𝑍 is biased but has a lower sam-
pling variance. Similarly, the sample correlation coefficient is a consistent estimator for the
population correlation coefficient

𝜌𝑌 𝑍 = 𝐶𝑜𝑟𝑟(𝑌 , 𝑍) = 𝐶𝑜𝑣(𝑌 , 𝑍)
√𝑉 𝑎𝑟(𝑌 )𝑉 𝑎𝑟(𝑍)

.

To compute these quantities for a bivariate sample collected in the vectors Y and Z, use
cov(Y,Z) for the adjusted sample covariance and cor(Y,Z) for the sample correlation.

cov(wage, edu)

[1] 21.82614

cor(wage, edu)

[1] 0.3839897

2.8 Moment Matrices

Consider a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛, such as the following subset of the cps dataset:

dat = data.frame(wage, edu, fem)
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Mean Vector

The sample mean vector 𝑋𝑋𝑋 contains the sample means of the 𝑘 variables and is defined
as

𝑋𝑋𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖.

For i.i.d. samples, the sample mean vector is a consistent estimator for the population mean
vector 𝐸[𝑋𝑋𝑋].

colMeans(dat)

wage edu fem
23.9026619 13.9246187 0.4257223

Covariance Matrix

The sample covariance matrix Σ̂ is the 𝑘 × 𝑘 matrix given by

Σ̂ = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′.

Its elements 𝜎̂ℎ,𝑙 represent the pairwise sample covariance between variables ℎ and 𝑙:

𝜎̂ℎ,𝑙 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙), 𝑋ℎ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖ℎ.

The adjusted sample covariance matrix 𝑆 is defined as

𝑆 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′

Its elements 𝑠ℎ,𝑙 are the adjusted sample covariances, with main diagonal elements 𝑠2
ℎ =

𝑠ℎ,ℎ being the adjusted sample variances:

𝑠ℎ,𝑙 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙).

If the sample is i.i.d., both Σ̂ and 𝑆 are consistent estimators for the population covariance
matrix

Σ = 𝑉 𝑎𝑟(𝑋𝑋𝑋) = 𝐸[(𝑋𝑋𝑋 − 𝐸[𝑋𝑋𝑋])(𝑋𝑋𝑋 − 𝐸[𝑋𝑋𝑋])′].
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The adjusted covariance matrix 𝑆 is unbiased, while Σ̂ is biased but has lower sampling
variance.

## Adjusted sample covariance matrix
cov(dat)

wage edu fem
wage 428.948332 21.82614057 -1.66314777
edu 21.826141 7.53198925 0.06037303
fem -1.663148 0.06037303 0.24448764

Correlation Matrix

The sample correlation coefficient between the variables ℎ and 𝑙 is the standardized sample
covariance:

𝑟ℎ,𝑙 = 𝑠ℎ,𝑙
𝑠ℎ𝑠𝑙

= ∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙)

√∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)2√∑𝑛

𝑖=1(𝑋𝑖𝑙 − 𝑋𝑙)2
= 𝜎̂ℎ,𝑙

𝜎̂ℎ𝜎̂𝑙
.

These coefficients form the sample correlation matrix 𝑅, expressed as:

𝑅 = 𝐷−1𝑆𝐷−1,

where 𝐷 is the diagonal matrix of adjusted sample standard deviations:

𝐷 = 𝑑𝑖𝑎𝑔(𝑠1, … , 𝑠𝑘) =
⎛⎜⎜⎜⎜
⎝

𝑠1 0 … 0
0 𝑠2 … 0
⋮ ⋱ ⋮
0 0 … 𝑠𝑘

⎞⎟⎟⎟⎟
⎠

The matrices Σ̂, 𝑆, and 𝑅 are symmetric.

cor(dat)

wage edu fem
wage 1.0000000 0.38398973 -0.16240519
edu 0.3839897 1.00000000 0.04448972
fem -0.1624052 0.04448972 1.00000000

We find a strong positive correlation between wage and edu, a substantial negative correlation
between wage and fem, and a negligible correlation between edu and fem.
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2.9 R-codes

metrics-sec02.R
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Part II

Linear Regression
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