3 Least Squares

This section introduces the least squares method, focusing exclusively on its geometric and com-
putational aspects as an optimization problem that minimizes the sum of squared deviations
between observed and fitted values. The statistical properties of least squares, including the
formal linear model framework, hypothesis testing, and estimator properties, will be covered
in the next sections.

3.1 Regression Fundamentals

Regression Problem

The idea of regression analysis is to approximate a univariate dependent variable Y, (also

known as the regressand or response variable) as a function of the k-variate vector of the
independent variables X, (also known as regressors or predictor variables). The relationship
is formulated as

Y, ~ f(X;), i=1,..,n,

where Y;,...,Y, is a univariate dataset for the dependent variable and X, ..., X,, a k-variate
dataset for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of Y:

min Y . — )2,
nit ;m F(X))

Linear Regression
If the regression function f(X,) is linear in X, i.e.,
f(X,)=b +byX;0+ ... + b, X, = X/b, beRF
the minimization problem is known as the ordinary least squares (OLS) problem. The

coefficient vector has k entries:
b == (b]‘7 b27 cee 7bk))/'
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To avoid the unrealistic constraint of the regression line passing through the origin, a constant
term (intercept) is always included in X, typically as the first regressor:

XZ - (1,X7/2, ees ’Xik>/'

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining different variables), and
logarithmic transformations.

3.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector b € R¥ is defined as

n n

S,(b) => (Y, — f(X,)? =D (¥, — Xb)?
i=1 =1

It is minimized by the least squares coefficient vector

n

B = argmin, g, Z(Yl — X'b)%

i=1

Least squares coefficients

If the k x k matrix (Z?Zl X, X)) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

-1 n

= (ixgq) Y XY,
i=1 i=1

The fitted values or predicted values are
Y, =B+ ByXpg+ o+ B Xy = X\B, i=1,..,n.
The residuals are the difference between observed and fitted values:

=Y, -Y, =Y, - X8, i=1,.,n.
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3.3 Regression Plots

Line Fitting

Let’s examine the linear relationship between average test scores and the student-teacher
ratio:

data(CASchools, package = "AER")

CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math) /2
fitl = Im(score ~ STR, data = CASchools)
fiti$coefficients

(Intercept) STR
698.932949  -2.279808

We have
- 698.9
B= (—%&28)'

698.9 — 2.28 STR.

The fitted regression line is

We can plot the regression line over a scatter plot of the data:

par (mfrow = c(1,2), cex=0.8)
plot(score ~ STR, data = CASchools)
abline(fitl, col="blue")

plot (CASchools$STR, fitl$residuals)
abline(0, 0, col="blue")
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Multidimensional Visualizations

Let’s include the percentage of english learners as an additional regressor:

fit2= 1lm(score ~ STR + english, data = CASchools)
fit2$coefficients

(Intercept) STR english
686.0322445 -1.1012956 -0.6497768

A 3D plot provides a visual representation of the resulting regression line (surface):

OLS Regression Surface

CASchools$score
606264666800020

STR

Adding the additional predictor income gives a regression specification with dimensions beyond
visual representation:

fit3 = Im(score ~ STR + english + income, data = CASchools)
fit3$coefficients

(Intercept) STR english income
640.31549821 -0.06877542 -0.48826683 1.49451661

The fitted regression line now includes three predictors and four coefficients:

640.3 — 0.07 STR — 0.49 english + 1.49 income

For specifications with multiple regressors, fitted values and residuals can still be visualized:
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par(mfrow = c(1,2), cex=0.8)
plot(fit3$fitted.values)

plot(fit3$residuals)
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The pattern of fitted values arises because the observations in the CASchools dataset are sorted
in ascending order by test score.

3.4 Matrix notation

OLS Formula

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector Y and the regressor matrix (design matrix) X as
follows:

Y, X
Y=|72|, X=|"2%|=]: :
v % 1 X, . X,

Note that " X, X;=X'X and ). XY, =X'Y.

The least squares coefficient vector becomes

1 n

B= (anxixg) S XY, = (X'X)IXY.
=1 =1

The vector of fitted values can be computed as follows:

Y,
Y=|:|=XxB=XX'X)XY.

Y,

n
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Residuals

The vector of residuals is given by

ul P .
i=|:|=Y-Y=Y-XB

Up,

An important property of the residual vector is: X’u = 0. To see that this property holds,
let’s rearrange the OLS formula:

B=(X'X)'XY < XXB=XY.
The dependent dependent variable vector can be decomposed into the vector of fitted values
and the residual vector: R
Y =XB+u.
Substituting this into the OLS formula from above gives:
X'XB=X(XB+1) < 0=X4u
This property has a geometric interpretation: it means the residuals are orthogonal to all

regressors. This makes sense because if there were any linear relationship left between the
residuals and the regressors, we could have captured it in our model to improve the fit.

3.5 Goodness of Fit

Analysis of Variance

The orthogonality property of the residual vector can be written in a more detailed way as

follows: —
;izl Wi 0
X' = Elﬂfh% -1 (3.1)
Zyzl szaz 0

In particular, the sample mean of the residuals is zero:
1<~
— u;, = 0.
n Z !

als:
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The sample variance of the dependent variable is

n

~2
O-Y_

SHE

i—1
and the sample variance of the fitted values is

Yy I s =
n- s e

N
The three sample variances are connected through the analysis of variance formula:
02 = &; + 2.
Hence, the larger the proportion of the explained sample variance, the better the fit of the

OLS regression.

R-squared

The analysis of variance formula motivates the definition of the R-squared coefficient:

=

R2:1—§:1— Zﬁzlagi :Zzl:l(yvz_z>2
O-%/ Zi:l(Y; - Y)2 Zizl(y; - Y>2

The R-squared describes the proportion of sample variation in Y explained by Y. We have
0<R*<1.

In a regression of Y, on a single regressor Z, with intercept (simple linear regression), the

R-squared is equal to the squared sample correlation coefficient of Y, and Z;.

An R-squared of 0 indicates no sample variation in Y (a flat regression line/surface), whereas
a value of 1 indicates no variation in u, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in Y that is not captured
by the regressors X linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If k = n, we have R? = 1 even if none of the regressors has an actual influence on the dependent
variable.
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Adjusted R-squared
Recall that the deviations (Y,—Y) cannot vary freely because they are subject to the constraint
E?zl(Yi —Y), which is why we lose 1 degree of freedom in the sample variance of Y.

For the sample variance of %, we loose k degrees of freedom because the residuals are subject to
the constraints from Equation 3.1. The adjusted sample variance of the residuals is therefore

defined as:
1 n 5

By incorporating adjusted versions in the R-squared definition, we penalize regression specifi-
cations with large k. The adjusted R-squared is

1 noo~2
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The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

3.6 Regression Table

The modelsummary () function can be used to produce comparison tables of regression out-
puts:

library(modelsummary)
mymodels = list(fitl, fit2, fit3)
modelsummary (mymodels,
statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

Model (3) explains the most variation in test scores and provides the best fit to the data, as
indicated by the highest R? and the lowest residual standard error.

In model (1), schools with one more student per class are predicted to have a 2.28-point lower
test score. This effect decreases to 1.1 points in model (2), after accounting for the percentage
of English learners, and drops further to just 0.07 points in model (3), once income is also
included.
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(1) (2) (3)
(Intercept) 698.933 686.032 640.315

STR —2.280 —1.101 —0.069
english —0.650 —0.488
income 1.495
Num.Obs. 420 420 420
R2 0.051 0.426 0.707
R2 Adj. 0.049 0.424 0.705
RMSE 18.54 14.41 10.30

The Root Mean Squared Error (RMSE) is the squareroot of the mean squared error of
the residuals:

While the R-squared increases in the number of regressors, the RMSE decreases.

To give deeper meaning to these results and understand their interpretation within a broader
context, we turn to a formal probabilistic model framework in the next section.

3.7 When OLS Fails

Too many regressors
OLS should be considered for regression problems with £ << n (small k£ and large n). When

the number of predictors k approaches or equals the number of observations n, we run into the
problem of overfitting. Specifically, at k = n, the regression line will perfectly fit the data.
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OLS with k=n=2 OLS with k=n=3
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If K = n > 4, we can no longer visualize the OLS regression line in the 3D space, but the
problem of a perfect fit is still present. If k > n, there exists no unique OLS solution because
X’X is not invertible. Regression problems with & ~ n or k > n are called high-dimensional
regressions.

Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix X’X.
As discussed above, a necessary condition is that & < n.

Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).

Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(X) < k. It implies rank(X’X) < k, so that the matrix is singular
and B cannot be computed.

Near multicollinearity occurs when two columns of X have a sample correlation very close
to 1 or -1. Then, (X’'X) is “near singular”, its eigenvalues are very small, and (X'X)~!
becomes very large, causing numerical problems.

If k¥ < n and multicollinearity is present, it means that at least one regressor is redundant and
can be dropped.
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Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
consider the cps data and add a dummy variable for non-married individuals:

cps = read.csv("cps.csv")
cps$nonmarried = 1-cps$married
fit4 = lm(wage ~ married + nonmarried, data = cps)

fit4$coefficients
(Intercept) married nonmarried
19.338695 6.997155 NA

The coefficient for nonmarried is NA. We fell into the dummy variable trap!

The dummy variables married and nonmarried are collinear with the intercept variable be-
cause married + nonmarried = 1, which leads to a singular matrix X’X and therefore to
perfect multicollinearity.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Another solution would be to remove the intercept from
the model, which can be done by adding -1 to the model formula:

fits = Im(wage ~ married + nonmarried - 1, data = cps)
fitb$coefficients

married nonmarried
26.33585 19.33869

3.8 R-codes

metrics-sec03.R
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