
3 Least Squares

This section introduces the least squares method, focusing exclusively on its geometric and com-
putational aspects as an optimization problem that minimizes the sum of squared deviations
between observed and fitted values. The statistical properties of least squares, including the
formal linear model framework, hypothesis testing, and estimator properties, will be covered
in the next sections.

3.1 Regression Fundamentals

Regression Problem

The idea of regression analysis is to approximate a univariate dependent variable 𝑌𝑖 (also
known as the regressand or response variable) as a function of the 𝑘-variate vector of the
independent variables 𝑋𝑋𝑋𝑖 (also known as regressors or predictor variables). The relationship
is formulated as

𝑌𝑖 ≈ 𝑓(𝑋𝑋𝑋𝑖), 𝑖 = 1, … , 𝑛,
where 𝑌1, … , 𝑌𝑛 is a univariate dataset for the dependent variable and 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 a 𝑘-variate
dataset for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of 𝑌𝑖:

min
𝑓(⋅)

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2.

Linear Regression

If the regression function 𝑓(𝑋𝑋𝑋𝑖) is linear in 𝑋𝑋𝑋𝑖, i.e.,

𝑓(𝑋𝑋𝑋𝑖) = 𝑏1 + 𝑏2𝑋𝑖2 + … + 𝑏𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏, 𝑏𝑏𝑏 ∈ ℝ𝑘,

the minimization problem is known as the ordinary least squares (OLS) problem. The
coefficient vector has 𝑘 entries:

𝑏𝑏𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘)′.
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To avoid the unrealistic constraint of the regression line passing through the origin, a constant
term (intercept) is always included in 𝑋𝑋𝑋𝑖, typically as the first regressor:

𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′.

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining different variables), and
logarithmic transformations.

3.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector 𝑏𝑏𝑏 ∈ ℝ𝑘 is defined as

𝑆𝑛(𝑏𝑏𝑏) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

It is minimized by the least squares coefficient vector

̂𝛽𝛽𝛽 = argmin𝑏𝑏𝑏∈ℝ𝑘

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

Least squares coefficients

If the 𝑘 × 𝑘 matrix (∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖.

The fitted values or predicted values are

𝑌𝑖 = ̂𝛽1 + ̂𝛽2𝑋𝑖2 + … + ̂𝛽𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

The residuals are the difference between observed and fitted values:

𝑢̂𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.
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3.3 Regression Plots

Line Fitting

Let’s examine the linear relationship between average test scores and the student-teacher
ratio:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
fit1 = lm(score ~ STR, data = CASchools)
fit1$coefficients

(Intercept) STR
698.932949 -2.279808

We have
̂𝛽𝛽𝛽 = (698.9

−2.28) .

The fitted regression line is
698.9 − 2.28 STR.

We can plot the regression line over a scatter plot of the data:

par(mfrow = c(1,2), cex=0.8)
plot(score ~ STR, data = CASchools)
abline(fit1, col="blue")
plot(CASchools$STR, fit1$residuals)
abline(0, 0, col="blue")
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Multidimensional Visualizations

Let’s include the percentage of english learners as an additional regressor:

fit2= lm(score ~ STR + english, data = CASchools)
fit2$coefficients

(Intercept) STR english
686.0322445 -1.1012956 -0.6497768

A 3D plot provides a visual representation of the resulting regression line (surface):

OLS Regression Surface
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Adding the additional predictor income gives a regression specification with dimensions beyond
visual representation:

fit3 = lm(score ~ STR + english + income, data = CASchools)
fit3$coefficients

(Intercept) STR english income
640.31549821 -0.06877542 -0.48826683 1.49451661

The fitted regression line now includes three predictors and four coefficients:

640.3 − 0.07 STR − 0.49 english + 1.49 income

For specifications with multiple regressors, fitted values and residuals can still be visualized:
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par(mfrow = c(1,2), cex=0.8)
plot(fit3$fitted.values)
plot(fit3$residuals)
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The pattern of fitted values arises because the observations in the CASchools dataset are sorted
in ascending order by test score.

3.4 Matrix notation

OLS Formula

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector 𝑌𝑌𝑌 and the regressor matrix (design matrix) 𝑋𝑋𝑋 as
follows:

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑋𝑋𝑋′
1

𝑋𝑋𝑋′
2

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1 𝑋12 … 𝑋1𝑘
⋮ ⋮
1 𝑋𝑛2 … 𝑋𝑛𝑘

⎞⎟
⎠

Note that ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 = 𝑋𝑋𝑋′𝑋𝑋𝑋 and ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .

The least squares coefficient vector becomes

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

The vector of fitted values can be computed as follows:

𝑌𝑌𝑌 = ⎛⎜⎜
⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

= 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .
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Residuals

The vector of residuals is given by

̂𝑢𝑢𝑢 = ⎛⎜
⎝

𝑢̂1
⋮

𝑢̂𝑛

⎞⎟
⎠

= 𝑌𝑌𝑌 − 𝑌𝑌𝑌 = 𝑌𝑌𝑌 − 𝑋𝑋𝑋 ̂𝛽𝛽𝛽.

An important property of the residual vector is: 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 = 000. To see that this property holds,
let’s rearrange the OLS formula:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 ⇔ 𝑋𝑋𝑋′𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .

The dependent dependent variable vector can be decomposed into the vector of fitted values
and the residual vector:

𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 + ̂𝑢𝑢𝑢.
Substituting this into the OLS formula from above gives:

𝑋𝑋𝑋′𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋′(𝑋𝑋𝑋 ̂𝛽𝛽𝛽 + ̂𝑢𝑢𝑢) ⇔ 000 = 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢.

This property has a geometric interpretation: it means the residuals are orthogonal to all
regressors. This makes sense because if there were any linear relationship left between the
residuals and the regressors, we could have captured it in our model to improve the fit.

3.5 Goodness of Fit

Analysis of Variance

The orthogonality property of the residual vector can be written in a more detailed way as
follows:

𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 =
⎛⎜⎜⎜⎜
⎝

∑𝑛
𝑖=1 𝑢̂𝑖

∑𝑛
𝑖=1 𝑋𝑖2𝑢̂𝑖

⋮
∑𝑛

𝑖=1 𝑋𝑖𝑘𝑢̂𝑖

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0
0
⋮
0

⎞⎟⎟⎟⎟
⎠

. (3.1)

In particular, the sample mean of the residuals is zero:

1
𝑛

𝑛
∑
𝑖=1

𝑢̂𝑖 = 0.

Therefore, the sample variance of the residuals is simply the sample mean of squared residu-
als:

𝜎̂2
𝑢̂ = 1

𝑛
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

51



The sample variance of the dependent variable is

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2,

and the sample variance of the fitted values is

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

The three sample variances are connected through the analysis of variance formula:

𝜎̂2
𝑌 = 𝜎̂2

𝑌 + 𝜎̂2
𝑢̂.

Hence, the larger the proportion of the explained sample variance, the better the fit of the
OLS regression.

R-squared

The analysis of variance formula motivates the definition of the R-squared coefficient:

𝑅2 = 1 − 𝜎̂2
𝑢̂

𝜎̂2
𝑌

= 1 − ∑𝑛
𝑖=1 𝑢̂2

𝑖
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 .

The R-squared describes the proportion of sample variation in 𝑌𝑌𝑌 explained by 𝑌𝑌𝑌 . We have
0 ≤ 𝑅2 ≤ 1.
In a regression of 𝑌𝑖 on a single regressor 𝑍𝑖 with intercept (simple linear regression), the
R-squared is equal to the squared sample correlation coefficient of 𝑌𝑖 and 𝑍𝑖.

An R-squared of 0 indicates no sample variation in 𝑌𝑌𝑌 (a flat regression line/surface), whereas
a value of 1 indicates no variation in ̂𝑢𝑢𝑢, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in 𝑌𝑌𝑌 that is not captured
by the regressors 𝑋𝑋𝑋 linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If 𝑘 = 𝑛, we have 𝑅2 = 1 even if none of the regressors has an actual influence on the dependent
variable.
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Adjusted R-squared

Recall that the deviations (𝑌𝑖−𝑌 ) cannot vary freely because they are subject to the constraint
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 ), which is why we lose 1 degree of freedom in the sample variance of 𝑌𝑌𝑌 .

For the sample variance of ̂𝑢𝑢𝑢, we loose 𝑘 degrees of freedom because the residuals are subject to
the constraints from Equation 3.1. The adjusted sample variance of the residuals is therefore
defined as:

𝑠2
𝑢̂ = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

By incorporating adjusted versions in the R-squared definition, we penalize regression specifi-
cations with large 𝑘. The adjusted R-squared is

𝑅2 = 1 −
1

𝑛−𝑘 ∑𝑛
𝑖=1 𝑢̂2

𝑖
1

𝑛−1 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 = 1 − 𝑠2

𝑢̂
𝑠2

𝑌
.

The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

3.6 Regression Table

The modelsummary() function can be used to produce comparison tables of regression out-
puts:

library(modelsummary)
mymodels = list(fit1, fit2, fit3)
modelsummary(mymodels,

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

Model (3) explains the most variation in test scores and provides the best fit to the data, as
indicated by the highest 𝑅2 and the lowest residual standard error.

In model (1), schools with one more student per class are predicted to have a 2.28-point lower
test score. This effect decreases to 1.1 points in model (2), after accounting for the percentage
of English learners, and drops further to just 0.07 points in model (3), once income is also
included.
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(1) (2) (3)
(Intercept) 698.933 686.032 640.315
STR −2.280 −1.101 −0.069
english −0.650 −0.488
income 1.495
Num.Obs. 420 420 420
R2 0.051 0.426 0.707
R2 Adj. 0.049 0.424 0.705
RMSE 18.54 14.41 10.30

The Root Mean Squared Error (RMSE) is the squareroot of the mean squared error of
the residuals:

𝑅𝑀𝑆𝐸( ̂𝛽𝛽𝛽) = 𝜎̂𝑢̂ = √ 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖 .

While the R-squared increases in the number of regressors, the RMSE decreases.

To give deeper meaning to these results and understand their interpretation within a broader
context, we turn to a formal probabilistic model framework in the next section.

3.7 When OLS Fails

Too many regressors

OLS should be considered for regression problems with 𝑘 << 𝑛 (small 𝑘 and large 𝑛). When
the number of predictors 𝑘 approaches or equals the number of observations 𝑛, we run into the
problem of overfitting. Specifically, at 𝑘 = 𝑛, the regression line will perfectly fit the data.
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If 𝑘 = 𝑛 ≥ 4, we can no longer visualize the OLS regression line in the 3D space, but the
problem of a perfect fit is still present. If 𝑘 > 𝑛, there exists no unique OLS solution because
𝑋𝑋𝑋′𝑋𝑋𝑋 is not invertible. Regression problems with 𝑘 ≈ 𝑛 or 𝑘 > 𝑛 are called high-dimensional
regressions.

Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋.
As discussed above, a necessary condition is that 𝑘 ≤ 𝑛.
Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).

Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(𝑋𝑋𝑋) < 𝑘. It implies rank(𝑋𝑋𝑋′𝑋𝑋𝑋) < 𝑘, so that the matrix is singular
and ̂𝛽𝛽𝛽 cannot be computed.

Near multicollinearity occurs when two columns of 𝑋𝑋𝑋 have a sample correlation very close
to 1 or -1. Then, (𝑋𝑋𝑋′𝑋𝑋𝑋) is “near singular”, its eigenvalues are very small, and (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

becomes very large, causing numerical problems.

If 𝑘 ≤ 𝑛 and multicollinearity is present, it means that at least one regressor is redundant and
can be dropped.
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Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
consider the cps data and add a dummy variable for non-married individuals:

cps = read.csv("cps.csv")
cps$nonmarried = 1-cps$married
fit4 = lm(wage ~ married + nonmarried, data = cps)
fit4$coefficients

(Intercept) married nonmarried
19.338695 6.997155 NA

The coefficient for nonmarried is NA. We fell into the dummy variable trap!

The dummy variables married and nonmarried are collinear with the intercept variable be-
cause 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + 𝑛𝑜𝑛𝑚𝑎𝑟𝑟𝑖𝑒𝑑 = 1, which leads to a singular matrix 𝑋𝑋𝑋′𝑋𝑋𝑋 and therefore to
perfect multicollinearity.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Another solution would be to remove the intercept from
the model, which can be done by adding -1 to the model formula:

fit5 = lm(wage ~ married + nonmarried - 1, data = cps)
fit5$coefficients

married nonmarried
26.33585 19.33869

3.8 R-codes

metrics-sec03.R
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