
4 Linear Model

4.1 Conditional Expectation

In econometrics, we often analyze how a variable of interest (like wages) varies systematically
with other variables (like education or experience). The conditional expectation function
(CEF) provides a powerful framework for describing these relationships.

The conditional expectation of 𝑌 given 𝑋 is the expected value of 𝑌 for each possible value
of 𝑋. For a continuous random variable 𝑌 we have

𝐸[𝑌 |𝑋 = 𝑥] = ∫
∞

−∞
𝑦 𝑓𝑌 |𝑋(𝑦|𝑥) 𝑑𝑦

where 𝑓𝑌 |𝑋(𝑦|𝑥) is the conditional density of 𝑌 given 𝑋 = 𝑥.
The CEF maps values of 𝑋 to corresponding conditional means of 𝑌 . As a function of the
random variable 𝑋, the CEF itself is a random variable:

𝐸[𝑌 |𝑋] = 𝑚(𝑋), where 𝑚(𝑥) = 𝐸[𝑌 |𝑋 = 𝑥]

For a comprehensive treatment of conditional expectations see Probability Tutorial
Part 2

Examples

Let’s examine this concept using wage and education as examples. When 𝑋 is discrete (such
as years of education), we can analyze how wage distributions change across education levels
by comparing their conditional distributions:

Notice how the conditional distributions shift rightward as education increases, indicating
higher average wages with higher education.

From these conditional densities, we can compute the expected wage for each education level.
Plotting these conditional expectations gives the CEF:

𝑚(𝑥) = 𝐸[wage ∣ edu = 𝑥]
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(a) Unconditional density of wage (b) Conditional density of wage given different years
of education

Figure 4.1: Unconditional density 𝑓(𝑦) and conditional densities 𝑓𝑌 |𝑋(𝑦|𝑥) of wage given 𝑥
years of education

Since education is discrete, the CEF is defined only at specific values, as shown in the left plot
below:

(a) CEF of wage given education (b) CEF of wage given experience

Figure 4.2: Conditional expectations of wage given education (left) and experience (right)

When 𝑋 is continuous (like years of experience), the CEF becomes a smooth function (right
plot). The shape of 𝐸[wage|experience] reflects real-world patterns: wages rise quickly early
in careers, then plateau, and may eventually decline near retirement.

The CEF as a Random Variable

It’s important to distinguish between:

• 𝐸[𝑌 |𝑋 = 𝑥]: a number (the conditional mean at a specific value)
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• 𝐸[𝑌 |𝑋]: a function of 𝑋, which is itself a random variable

For instance, if 𝑋 = education has the probability mass function:

𝑃(𝑋 = 𝑥) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑥 = 10
0.43 if 𝑥 = 12
0.16 if 𝑥 = 14
0.08 if 𝑥 = 16
0.24 if 𝑥 = 18
0.03 if 𝑥 = 21
0 otherwise

Then 𝐸[𝑌 |𝑋] as a random variable has the probability mass function:

𝑃(𝐸[𝑌 |𝑋] = 𝑦) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑦 = 11.68 (when 𝑋 = 10)
0.43 if 𝑦 = 14.26 (when 𝑋 = 12)
0.16 if 𝑦 = 17.80 (when 𝑋 = 14)
0.08 if 𝑦 = 16.84 (when 𝑋 = 16)
0.24 if 𝑦 = 21.12 (when 𝑋 = 18)
0.03 if 𝑦 = 27.05 (when 𝑋 = 21)
0 otherwise

The CEF assigns to each value of 𝑋 the expected value of 𝑌 given that information.

4.2 CEF Properties

The conditional expectation function has several important properties that make it a funda-
mental tool in econometric analysis.

Law of Iterated Expectations (LIE)

The law of iterated expectations connects conditional and unconditional expectations:

𝐸[𝑌 ] = 𝐸[𝐸[𝑌 |𝑋]]

This means that to compute the overall average of 𝑌 , we can first compute the average of 𝑌
within each group defined by 𝑋, then average those conditional means using the distribution
of 𝑋.
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This is analogous to the law of total probability, where we compute marginal probabilities or
densities as weighted averages of conditional ones:

When 𝑋 is discrete:

𝑃(𝑌 = 𝑦) = ∑
𝑥

𝑃(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝑓𝑌 (𝑦) = ∫

∞

−∞
𝑓𝑌 |𝑋(𝑦 ∣ 𝑥) ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Similarly, the LIE states:

When 𝑋 is discrete:
𝐸[𝑌 ] = ∑

𝑥
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝐸[𝑌 ] = ∫

∞

−∞
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Let’s apply this to our wage and education example. With 𝑋 = education and 𝑌 = wage, we
have:

𝐸[𝑌 |𝑋 = 10] = 11.68, 𝑃 (𝑋 = 10) = 0.06
𝐸[𝑌 |𝑋 = 12] = 14.26, 𝑃 (𝑋 = 12) = 0.43
𝐸[𝑌 |𝑋 = 14] = 17.80, 𝑃 (𝑋 = 14) = 0.16
𝐸[𝑌 |𝑋 = 16] = 16.84, 𝑃 (𝑋 = 16) = 0.08
𝐸[𝑌 |𝑋 = 18] = 21.12, 𝑃 (𝑋 = 18) = 0.24
𝐸[𝑌 |𝑋 = 21] = 27.05, 𝑃 (𝑋 = 21) = 0.03

The law of iterated expectations gives us:

𝐸[𝑌 ] = ∑
𝑥

𝐸[𝑌 |𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

= 11.68 ⋅ 0.06 + 14.26 ⋅ 0.43 + 17.80 ⋅ 0.16
+ 16.84 ⋅ 0.08 + 21.12 ⋅ 0.24 + 27.05 ⋅ 0.03

= 0.7008 + 6.1318 + 2.848 + 1.3472 + 5.0688 + 0.8115
= 16.91

This unconditional expected wage of 16.91 aligns with what we would calculate from the
unconditional density. The LIE provides us with a powerful way to bridge conditional expec-
tations (within education groups) and the overall unconditional expectation (averaging across
all education levels).
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Conditioning Theorem (CT)

The conditioning theorem (also called the factorization rule) states:

𝐸[𝑔(𝑋)𝑌 ∣ 𝑋] = 𝑔(𝑋) ⋅ 𝐸[𝑌 ∣ 𝑋]

This means that when taking the conditional expectation of a product where one factor is a
function of the conditioning variable, that factor can be treated as a constant and factored
out. Once we condition on 𝑋, the value of 𝑔(𝑋) is fixed.

If 𝑌 = wage and 𝑋 = education, then for someone with 16 years of education:

𝐸[16 ⋅ wage ∣ edu = 16] = 16 ⋅ 𝐸[wage ∣ edu = 16]

More generally, if we want to find the expected product of education and wage, conditional on
education:

𝐸[edu ⋅ wage ∣ edu] = edu ⋅ 𝐸[wage ∣ edu]

Best Predictor Property

The conditional expectation 𝐸[𝑌 |𝑋] is the best predictor of 𝑌 given 𝑋 in terms of mean
squared error:

𝐸[𝑌 |𝑋] = argmin
𝑔(⋅)

𝐸[(𝑌 − 𝑔(𝑋))2]

This means that among all possible functions of 𝑋, the CEF minimizes the expected squared
prediction error. In practical terms, if you want to predict wages based only on education, the
optimal prediction is exactly the conditional mean wage for each education level.

For example, if someone has 18 years of education, our best prediction of their wage (minimiz-
ing expected squared error) is 𝐸[wage|education = 18] = 21.12.
No other function of education, whether linear, quadratic, or more complex, can yield a better
prediction in terms of expected squared error than the CEF itself.

Independence Implications

If 𝑌 and 𝑋 are independent, then:

𝐸[𝑌 |𝑋] = 𝐸[𝑌 ]

When variables are independent, knowing 𝑋 provides no information about 𝑌 , so the condi-
tional expectation equals the unconditional expectation. The CEF becomes a constant function
that doesn’t vary with 𝑋.
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In our wage example, if education and wage were completely independent, the CEF would be a
horizontal line at the overall average wage of 16.91. Each conditional density 𝑓𝑌 |𝑋(𝑦|𝑥) would
be identical to the unconditional density 𝑓(𝑦), and the conditional means would all equal the
unconditional mean.

The fact that our CEF for wage given education has a positive slope indicates that these
variables are not independent—higher education is associated with higher expected wages.

4.3 Linear Model Specification

Prediction Error

Consider a sample {(𝑌𝑖,𝑋𝑋𝑋𝑖)}𝑛
𝑖=1. We have established that the conditional expectation

function (CEF) 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] is the best predictor of 𝑌𝑖 given 𝑋𝑋𝑋𝑖, minimizing the mean squared
prediction error.

This leads to the following prediction error:

𝑢𝑖 = 𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]

By construction, this error has a conditional mean of zero:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0

This zero conditional mean property follows directly from the law of iterated expectations:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] − 𝐸[𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] − 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0

We can thus always decompose the outcome as:

𝑌𝑖 = 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] + 𝑢𝑖

where 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0. This equation is not yet a regression model. It’s simply the decomposition
of 𝑌𝑖 into its conditional expectation and an unpredictable component.
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Linear Regression Model

To move to a regression framework, we impose a structural assumption about the form of the
CEF. The key assumption of the linear regression model is that the conditional expectation
is a linear function of the regressors:

𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽

Substituting this into our decomposition yields the linear regression equation:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 (4.1)

with the crucial assumption:
𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 (4.2)

Exogeneity

This assumption (Equation 9.3) is called exogeneity or mean independence. It ensures
that the linear function 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 correctly captures the conditional mean of 𝑌𝑖.

Under the linear regression equation (Equation 4.1) we have the following equivalence:

𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 ⇔ 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0

Therefore, the linear regression model in its most general form is characterized by the two con-
ditions: linear regression equation (Equation 4.1) and exogenous regressors (Equation 9.3).

For example, in a wage regression, exogeneity means that the expected wage conditional on
education and experience is exactly captured by the linear combination of these variables. No
systematic pattern remains in the error term.

Model Misspecification

If the true conditional expectation function is nonlinear (e.g., if wages increase with education
at a diminishing rate), then 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] ≠ 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽, and the model is misspecified. In such cases,
the linear model provides the best linear approximation to the true CEF, but systematic
patterns remain in the error term.

It’s important to note that 𝑢𝑖 may still be statistically dependent on 𝑋𝑋𝑋𝑖 in ways other than its
mean. For example, the variance of 𝑢𝑖 may depend on 𝑋𝑋𝑋𝑖 in the case of heteroskedasticity.
For instance, wage dispersion might increase with education level. The assumption 𝐸[𝑢𝑖 ∣
𝑋𝑋𝑋𝑖] = 0 requires only that the conditional mean of the error is zero, not that the error is
completely independent of the regressors.
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4.4 Population Regression Coefficient

Under the linear model
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0,
we are interested in the population regression coefficient 𝛽𝛽𝛽, which indicates how the
conditional mean of 𝑌𝑖 varies linearly with the regressors in 𝑋𝑋𝑋𝑖.

Moment Condition

A key implication of the exogeneity condition 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 is that the regressors are mean
uncorrelated with the error term:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000

This can be derived from the exogeneity condition using the law of iterated expectations:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝐸[𝑋𝑋𝑋𝑖𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 0] = 000

Substituting the linear model into the mean uncorrelatedness condition gives a moment con-
dition that identifies 𝛽𝛽𝛽:

000 = 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝑋𝑋𝑋𝑖(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽)] = 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] − 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Rearranging to solve for 𝛽𝛽𝛽:
𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Assuming that the matrix 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is invertible, we can express the population regression

coefficient as:
𝛽𝛽𝛽 = (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖]

This expression shows that 𝛽𝛽𝛽 is entirely determined by the joint distribution of (𝑌𝑖,𝑋𝑋𝑋′
𝑖) in the

population.

The invertibility of 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is guaranteed if there is no perfect linear relationship among the

regressors. In particular, no pair of regressors should be perfectly correlated, and no regressor
should be a perfect linear combination of the other regressors.
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OLS Estimation

To estimate 𝛽𝛽𝛽 from data, we replace population moments with sample moments. Given a
sample {(𝑌𝑖,𝑋𝑋𝑋𝑖)}𝑛

𝑖=1, the ordinary least squares (OLS) estimator is:

̂𝛽𝛽𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖)

This can be simplified to the familiar form:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌

The OLS estimator solves the sample moment condition:

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽) = 000

or equivalently:
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢̂𝑖 = 000

where 𝑢̂𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽 are the sample residuals.

In this framework, OLS can be viewed as a method of moments estimator, solving the
sample analogue of the population moment condition 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000. The method of moments
principle replaces theoretical moments with their empirical counterparts to obtain estimates
of unknown parameters.

4.5 Marginal Effects

Consider the regression model of hourly wage on education (years of schooling),

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖, 𝑖 = 1, … , 𝑛,

where the exogeneity assumption holds:

𝐸[𝑢𝑖|edu𝑖] = 0.
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The population regression function, which gives the conditional expectation of wage given
education, can be derived as:

𝑚(edu𝑖) = 𝐸[wage𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝐸[𝑢𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖

Thus, the average wage level of all individuals with 𝑧 years of schooling is:

𝑚(𝑧) = 𝛽1 + 𝛽2 ⋅ 𝑧.

Interpretation of Coefficients

In the linear regression model
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑢𝑖,
the coefficient vector 𝛽𝛽𝛽 captures the way the conditional mean of 𝑌𝑖 changes with the
regressors 𝑋𝑋𝑋𝑖. Under the exogeneity assumption,

𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 = 𝛽1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘.

This linearity allows for a simple interpretation. The coefficient 𝛽𝑗 represents the partial
derivative of the conditional mean with respect to 𝑋𝑖𝑗:

𝜕𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕𝑋𝑖𝑗

= 𝛽𝑗.

This means that 𝛽𝑗 measures the marginal effect of a one-unit increase in 𝑋𝑖𝑗 on the expected
value of 𝑌𝑖, holding all other variables constant.

If 𝑋𝑖𝑗 is a dummy variable (i.e., binary), then 𝛽𝑗 measures the discrete change in 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖]
when 𝑋𝑖𝑗 changes from 0 to 1.

For our wage-education example, the marginal effect of education is:

𝜕𝐸[wage𝑖|edu𝑖]
𝜕edu𝑖

= 𝛽2.

This theoretical population parameter can be estimated using OLS:

cps = read.csv("cps.csv")
lm(wage ~ education, data = cps)
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Call:
lm(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education

-16.448 2.898

Interpretation: People with one more year of education are paid on average $2.90 USD more per
hour than people with one year less of education, assuming the exogeneity condition holds.

Correlation vs. Causation

The coefficient 𝛽2 describes the correlative relationship between education and wages, not
necessarily a causal one. To see this connection to correlation, consider the covariance of the
two variables:

𝐶𝑜𝑣(wage𝑖, edu𝑖) = 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝑢𝑖, edu𝑖)
= 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖, edu𝑖) + 𝐶𝑜𝑣(𝑢𝑖, edu𝑖)

The term 𝐶𝑜𝑣(𝑢𝑖, edu𝑖) equals zero due to the exogeneity assumption. To see this, recall that
𝐸[𝑢𝑖] = 𝐸[𝐸[𝑢𝑖|edu𝑖]] = 0 by the LIE and 𝐸[𝑢𝑖edu𝑖] = 0 by mean uncorrelatedness, which
implies

𝐶𝑜𝑣(𝑢𝑖, edu𝑖) = 𝐸[𝑢𝑖edu𝑖] − 𝐸[𝑢𝑖] ⋅ 𝐸[edu𝑖] = 0

The coefficient 𝛽2 is thus proportional to the population correlation coefficient:

𝛽2 = 𝐶𝑜𝑣(wage𝑖, edu𝑖)
𝑉 𝑎𝑟(edu𝑖)

= 𝐶𝑜𝑟𝑟(wage𝑖, edu𝑖) ⋅ 𝑠𝑑(wage𝑖)
𝑠𝑑(edu𝑖)

.

The marginal effect is a correlative effect and does not necessarily reveal the source of the
higher wage levels for people with more education.

Regression relationships do not necessarily imply causal relationships.

People with more education may earn more for various reasons:

• They might be naturally more talented or capable
• They might come from wealthier families with better connections
• They might have access to better resources and opportunities
• Education itself might actually increase productivity and earnings
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Figure 4.3: A DAG (directed acyclic graph) showing potential confounding factors in the
education-wage relationship

The coefficient 𝛽2 measures how strongly education and earnings are correlated, but this
association could be due to other factors that correlate with both wages and education, such
as:

• Family background (parental education, family income, ethnicity)
• Personal background (gender, intelligence, motivation)

Remember: Correlation does not imply causation!

Omitted Variable Bias

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) is correlated with the dependent variable (wage𝑖, in this scenario)

(ii) is correlated with the regressor of interest (edu𝑖)

(iii) is omitted in the regression

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.
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The coefficient 𝛽2 in the simple regression model measures the correlative or marginal effect, not
the causal effect. This must always be kept in mind when interpreting regression coefficients.

Control Variables

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret 𝛽2 as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as racial background and gender dummy
variables for Black and female:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3exper𝑖 + 𝛽4Black𝑖 + 𝛽5fem𝑖 + 𝑢𝑖.

In this case,

𝛽2 = 𝜕𝐸[wage𝑖|edu𝑖, exper𝑖,Black𝑖, fem𝑖]
𝜕edu𝑖

is the marginal effect of education on expected wages, holding experience, race, and gender
fixed.

lm(wage ~ education + experience + Black + female, data = cps)

Call:
lm(formula = wage ~ education + experience + Black + female,

data = cps)

Coefficients:
(Intercept) education experience Black female

-21.7095 3.1350 0.2443 -2.8554 -7.4363

Interpretation of coefficients:

• Education: Given the same experience, racial background, and gender, people with one
more year of education are paid on average $3.14 USD more than people with one year
less of education.

• Experience: Each additional year of experience is associated with an average wage
increase of $0.24 USD per hour, holding other factors constant.

• Black: Black workers earn on average $2.86 USD less per hour than non-Black workers
with the same education, experience, and gender.

• Female: Women earn on average $7.43 USD less per hour than men with the same
education, experience, and racial background.
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Note: This regression does not control for other unobservable characteristics (such as ability)
or variables not included in the regression (such as quality of education), so omitted variable
bias may still be present.

Good vs. Bad Controls

It’s important to recognize that control variables are always selected with respect to a par-
ticular regressor of interest. A researcher typically focuses on estimating the effect of one
specific variable (like education), and control variables must be designed specifically for this
relationship.

In causal inference terminology, we can distinguish between different types of variables:

• Confounders: Variables that affect both the regressor of interest and the outcome.
These are good controls because they help isolate the causal effect of interest.

• Mediators: Variables through which the regressor of interest affects the outcome. Con-
trolling for mediators can block part of the causal effect we’re trying to estimate.

• Colliders: Variables that are affected by both the regressor of interest and the outcome
(or by factors that determine the outcome). Controlling for colliders can create spurious
associations.

Confounders

Examples of good controls (confounders) for education are:

• Parental education level (affects both a person’s education and their wage potential)
• Region of residence (geographic factors can influence education access and job markets)
• Family socioeconomic background (affects educational opportunities and wage potential)

Figure 4.4: A DAG of the education-wage relationship with family confounder
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Mediators and Colliders

Examples of bad controls include:

• Mediators: Variables that are part of the causal pathway from education to wages

– Current job position (education → job position → wage)
– Professional sector (education may determine which sector someone works in)
– Number of professional certifications (likely a result of education level)

Figure 4.5: A DAG of the education-wage relationship with job position mediator

• Colliders: Variables affected by both education and wages (or their determinants)

– Happiness/life satisfaction (might be affected independently by both education and
wages)

– Work-life balance (both education and wages might affect this independently)

Figure 4.6: A DAG of the education-wage relationship with happiness collider
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Bad controls create two problems:

1. Statistical issue: High correlation with the variable of interest (like education) causes
high variance in the coefficient estimate (imperfect multicollinearity).

2. Causal inference issue: They distort the relationship we’re trying to estimate by either
blocking part of the causal effect (mediators) or creating artificial associations (colliders).

Good control variables are typically determined before the level of education is determined,
while bad controls are often outcomes of the education process itself or are jointly determined
with wages.

The appropriate choice of control variables requires not just statistical knowledge but also
subject-matter expertise about the causal structure of the relationships being studied.

4.6 Application: Class Size Effect

Let’s apply these concepts to a real-world research question: How does class size affect student
performance?

Recall the CASchools dataset used in the Stock and Watson textbook, which contains infor-
mation on California school characteristics:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2

We are interested in the effect of the student-teacher ratio STR (class size) on the average
test score score. Following our previous discussion on causal inference, we need to consider
potential confounding factors that might affect both class sizes and test scores.

Control Strategy

Let’s examine several control variables:

• english: proportion of students whose primary language is not English.
• lunch: proportion of students eligible for free/reduced-price meals.
• expenditure: total expenditure per pupil.

First, we should check whether these variables are correlated with both our regressor of interest
(STR) and the outcome (score):
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(1) (2) (3) (4)
(Intercept) 698.933 686.032 700.150 665.988
STR −2.280 −1.101 −0.998 −0.235
english −0.650 −0.122 −0.128
lunch −0.547 −0.546
expenditure 0.004
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
RMSE 18.54 14.41 9.04 8.86

library(dplyr)
CASchools |> select(STR, score, english, lunch, expenditure) |> cor()

STR score english lunch expenditure
STR 1.0000000 -0.2263627 0.18764237 0.13520340 -0.61998216
score -0.2263627 1.0000000 -0.64412381 -0.86877199 0.19127276
english 0.1876424 -0.6441238 1.00000000 0.65306072 -0.07139604
lunch 0.1352034 -0.8687720 0.65306072 1.00000000 -0.06103871
expenditure -0.6199822 0.1912728 -0.07139604 -0.06103871 1.00000000

The correlation matrix reveals that english, lunch, and expenditure are indeed correlated
with both STR and score. This suggests they could be confounders that, if omitted, might
bias our estimate of the class size effect.

Let’s implement a control strategy, adding potential confounders one by one to see how the
estimated marginal effect of class size changes:

fit1 = lm(score ~ STR, data = CASchools)
fit2 = lm(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = lm(score ~ STR + english + lunch + expenditure, data = CASchools)
library(modelsummary)
mymodels = list(fit1, fit2, fit3, fit4)
modelsummary(mymodels,

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))
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Interpretation of Marginal Effects

Let’s interpret the coefficients on STR from each model more precisely:

• Model (1): Between two classes that differ by one student, the class with more students
scores on average 2.280 points lower. This represents the unadjusted association without
controlling for any confounding factors.

• Model (2): Between two classes that differ by one student but have the same share of
English learners, the larger class scores on average 1.101 points lower. Controlling for
English learner status cuts the estimated effect by more than half.

• Model (3): Between two classes that differ by one student but have the same share
of English learners and students with reduced meals, the larger class scores on average
0.998 points lower. Adding this socioeconomic control further reduces the estimated
effect slightly.

• Model (4): Between two classes that differ by one student but have the same share
of English learners, students with reduced meals, and per-pupil expenditure, the larger
class scores on average 0.235 points lower. This represents a dramatic reduction from
the previous model.

The sequential addition of controls demonstrates how sensitive the estimated marginal effect
is to model specification. Each coefficient represents the partial derivative of the expected test
score with respect to the student-teacher ratio, holding constant the variables included in that
particular model.

Identifying Good and Bad Controls

Based on our causal framework from the previous section, we can evaluate our control vari-
ables:

• Confounders (good controls): english and lunch are likely good controls be-
cause they represent pre-existing student characteristics that influence both class size
assignments (schools might create smaller classes for disadvantaged students) and test
performance.

• Mediator (bad control): expenditure appears to be a bad control because it’s
likely a mediator in the causal pathway from class size to test scores. Smaller classes
mechanically increase per-pupil expenditure through higher teacher salary costs per stu-
dent.
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The causal relationship can be visualized as:

Class Size → Expenditure → Test Scores

When we control for expenditure, we block this causal pathway and “control away” part of
the effect we actually want to measure. This explains the dramatic drop in the coefficient in
Model (4) and suggests this model likely underestimates the true effect of class size.

This application demonstrates the crucial importance of thoughtful control variable selection in
regression analysis. The estimated marginal effect of class size on test scores varies substantially
depending on which variables we control for. Based on causal reasoning, we should prefer
Model (3) with the appropriate confounders but without the mediator.

4.7 Nonlinear Modeling

Polynomials

A linear dependence on wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

wage𝑖 = 𝛽1 + 𝛽2exper𝑖 + 𝛽3exper2
𝑖 + 𝛽4exper3

𝑖 + 𝑢𝑖.

## we focus on people with Asian background only for illustration
cps.as = cps |> subset(Asian == 1)
fit = lm(wage ~ experience + I(experience^2) + I(experience^3),

data = cps.as)
beta = fit$coefficients
beta |> round(4)

(Intercept) experience I(experience^2) I(experience^3)
20.4547 1.2013 -0.0447 0.0004

## Scatterplot
plot(wage ~ experience, data = cps.as, ylim = c(0,100))
## plot the cubic function for fitted wages
curve(
beta[1] + beta[2]*x + beta[3]*x^2 + beta[4]*x^3,
from = 0, to = 70, add=TRUE, col='red', lwd=2
)
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The marginal effect depends on the years of experience:

𝜕𝐸[wage𝑖|exper𝑖]
𝜕exper𝑖

= 𝛽2 + 2𝛽3exper𝑖 + 3𝛽4exper2
𝑖 .

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.2013 + 2 ⋅ (−0.0447) ⋅ 10 + 3 ⋅ 0.0004 ⋅ 102 = 0.4273.

Interactions

A linear regression with interaction terms:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3fem𝑖 + 𝛽4marr𝑖 + 𝛽5(marr𝑖 ⋅ fem𝑖) + 𝑢𝑖

lm(wage ~ education + female + married + married:female, data = cps)

Call:
lm(formula = wage ~ education + female + married + married:female,

data = cps)

Coefficients:
(Intercept) education female married female:married

-17.886 2.867 -3.266 7.167 -5.767
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The marginal effect of gender depends on the person’s marital status:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖,marr𝑖]
𝜕fem𝑖

= 𝛽3 + 𝛽5marr𝑖

Interpretation: Given the same education, unmarried women are paid on average 3.27 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖,marr𝑖]
𝜕marr𝑖

= 𝛽4 + 𝛽5fem𝑖

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

Logarithms

When analyzing wage data, we often use logarithmic transformations because they help model
proportional relationships and reduce the skewness of the typically right-skewed distribution
of wages. A common specification is the log-linear model, where we take the logarithm of
wages while keeping education in its original scale:

In the logarithmic specification

log(wage𝑖) = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖

we have
𝜕𝐸[log(wage𝑖)|𝑒𝑑𝑢𝑖]

𝜕edu𝑖
= 𝛽2.

This implies
𝜕𝐸[log(wage𝑖)|edu𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟

absolute
change

= 𝛽2 ⋅ 𝜕edu𝑖⏟
absolute
change

.

That is, 𝛽2 gives the average absolute change in log-wages when education changes by 1.

Another interpretation can be given in terms of relative changes. Consider the following
approximation:

𝐸[wage𝑖|edu𝑖] ≈ exp(𝐸[log(wage𝑖)|edu𝑖]).
The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because 𝐸[log(𝑌 )] < log(𝐸[𝑌 ]),
but this difference is small unless the data is highly skewed.
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The marginal effect of a change in 𝑒𝑑𝑢 on the geometric mean of 𝑤𝑎𝑔𝑒 is
𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])

𝜕edu𝑖
= 𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

outer derivative

⋅𝛽2.

Using the geometric mean approximation from above, we get
𝜕𝐸[wage𝑖|edu𝑖]
𝐸[wage𝑖|edu𝑖]⏟⏟⏟⏟⏟⏟⏟

percentage
change

≈ 𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])
𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])

= 𝛽2 ⋅ 𝜕edu𝑖⏟
absolute
change

.

linear_model = lm(wage ~ education, data = cps.as)
log_model = lm(log(wage) ~ education, data = cps.as)
log_model

Call:
lm(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education

1.3783 0.1113

plot(wage ~ education, data = cps.as, ylim = c(0,80), xlim = c(4,22))
abline(linear_model, col="blue")
coef = coefficients(log_model)
curve(exp(coef[1]+coef[2]*x), add=TRUE, col="red")
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Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-linear and log-linear specifications, we also have the linear-log speci-
fication

𝑌 = 𝛽1 + 𝛽2 log(𝑋) + 𝑢
and the log-log specification

log(𝑌 ) = 𝛽1 + 𝛽2 log(𝑋) + 𝑢.

Linear-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 0.01𝛽2 higher 𝑌 .

Log-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 𝛽2% higher 𝑌 .

4.8 R-codes

metrics-sec04.R
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