
5 Regression Inference

Recall the linear regression framework. We observe a sample {(𝑋𝑋𝑋𝑖, 𝑌𝑖)}𝑛
𝑖=1 and assume

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0,

where 𝑋𝑋𝑋𝑖 is a 𝑘-dimensional regressor vector (including an intercept), 𝛽𝛽𝛽 is the unknown pa-
rameter vector, and 𝑢𝑖 is the error term. In matrix form we have

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢,

where 𝑋𝑋𝑋 is the 𝑛×𝑘 design matrix (its rows are: 𝑋𝑋𝑋′
𝑖), 𝑌𝑌𝑌 is the 𝑛-vector of dependent variables,

and 𝑢𝑢𝑢 is the 𝑛-vector of errors.
The OLS estimator ̂𝛽𝛽𝛽 is obtained by minimizing the sum of squared residuals:

̂𝛽𝛽𝛽 = argmin
𝑏𝑏𝑏

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2

= (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖

= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 (𝑋𝑋𝑋′𝑌𝑌𝑌 ).

5.1 Strict Exogeneity

The weak exogeneity condition

𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0

ensures that the regressors are uncorrelated with the error at the individual observation level.
However, this condition is not sufficient to guarantee that the OLS estimator is unbiased.
It still allows for 𝑢𝑖 to be correlated with regressors from other observations (𝑋𝑋𝑋𝑗 for 𝑗 ≠ 𝑖),
which can lead to a biased estimation.

To ensure unbiasedness, we require the stronger condition of strict exogeneity:

𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑗] = 0 for each 𝑗 = 1, … , 𝑛,
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or, equivalently in matrix form:
𝐸[𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋] = 000.

Strict exogeneity requires the entire vector of errors 𝑢𝑢𝑢 to be mean independent of the full
regressor matrix 𝑋𝑋𝑋. That is, no systematic relationship exists between any regressors and any
error term across observations.

Note

Under i.i.d. sampling, strict exogeneity typically holds automatically: independence
across observations ensures 𝑢𝑖 is uncorrelated with 𝑋𝑋𝑋𝑗 for 𝑗 ≠ 𝑖.

However, strict exogeneity may fail in dynamic time series settings, e.g.:

𝑌𝑡 = 𝛽1 + 𝛽2𝑌𝑡−1 + 𝑢𝑡, 𝐸[𝑢𝑡|𝑌𝑡−1] = 0. (5.1)
Here, 𝑢𝑡 is uncorrelated with 𝑌𝑡−1, but it is correlated through Equation 5.1 with 𝑌𝑡, which is
the regressor for the dependent variable 𝑌𝑡+1:

𝑌𝑡+1 = 𝛽1 + 𝛽2𝑌𝑡 + 𝑢𝑡+1, 𝐸[𝑢𝑡+1|𝑌𝑡] = 0. (5.2)

Therefore the error of Equation 5.1 is correlated with the regressor of Equation 5.2, violating
strict exogeneity.

5.2 Unbiasedness

To derive the unbiasedness of the OLS estimator, recall the model:

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢.

Plugging this into the OLS formula:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢)
= 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢.

Taking the conditional expectation:

𝐸[ ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋] = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐸[𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋].

Under strict exogeneity, 𝐸[𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋] = 000, so:

𝐸[ ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋] = 𝛽𝛽𝛽.
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Taking the expectation over the sampling distribution of 𝑋𝑋𝑋:

𝐸[ ̂𝛽𝛽𝛽] = 𝐸[𝐸[ ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋]] = 𝛽𝛽𝛽.

Thus, each element of the OLS estimator is unbiased:

𝐸[ ̂𝛽𝑗] = 𝛽𝑗 for 𝑗 = 1, … , 𝑘.

Under strict exogeneity, the OLS estimator ̂𝛽𝛽𝛽 is unbiased:

𝐸[ ̂𝛽𝛽𝛽] = 𝛽𝛽𝛽.

Even when strict exogeneity fails (as in time-dependent settings) asymptotic unbiasedness
may still hold:

lim
𝑛→∞

𝐸[ ̂𝛽𝛽𝛽] = 𝛽𝛽𝛽.

For time series regressions, OLS remains asymptotically unbiased if far distant future regressors
are independent of current errors, and the underlying relationship remains stable over time,
i.e., there are no structural changes in the conditional mean function over time.

5.3 Sampling Variance of OLS

The OLS estimator ̂𝛽𝛽𝛽 provides a point estimate of the unknown population parameter 𝛽𝛽𝛽.
For example, in the regression

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3fem𝑖 + 𝑢𝑖,

we obtain specific coefficient estimates:

cps = read.csv("cps.csv")
fit = lm(wage ~ education + female, data = cps)
fit |> coef()

(Intercept) education female
-14.081788 2.958174 -7.533067
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The estimate for education is ̂𝛽2 = 2.958. However, this point estimate tells us nothing
about how far it might be from the true value 𝛽2. That is, it does not reflect estimation
uncertainty, which arises because ̂𝛽𝛽𝛽 depends on a finite sample that could have turned out
differently.

Larger samples tend to reduce estimation uncertainty, but in practice we only observe one
finite sample. To quantify this uncertainty, we study the sampling variance of the OLS
estimator:

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋),
the conditional variance of ̂𝛽𝛽𝛽 given the regressor matrix 𝑋𝑋𝑋.

General formula for sampling variance of OLS:

Let 𝐷𝐷𝐷 = 𝑉 𝑎𝑟(𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋) be the conditional covariance matrix of the error terms. Then,

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

This follows from
̂𝛽𝛽𝛽 = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢

together with the general rule that for any matrix 𝐴𝐴𝐴,

𝑉 𝑎𝑟(𝐴𝐴𝐴𝑢𝑢𝑢) = 𝐴𝐴𝐴 𝑉 𝑎𝑟(𝑢𝑢𝑢)𝐴𝐴𝐴′.

Depending on the structure of the data and the behavior of the error term, this expression
takes different forms:

Homoskedasticity

Let {(𝑋𝑋𝑋𝑖, 𝑌𝑖)}𝑛
𝑖=1 be an i.i.d. sample and let the error term be homoskedastic, meaning

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2 for all 𝑖.
Homoskedasticity means that the variance of the error does not depend on the value of the
regressor. For instance, in a regression of wage on female, homoskedasticity means that men
and women have the same error variance. Homoskedasticity holds if the error 𝑢𝑖 is independent
of the regressor 𝑋𝑋𝑋𝑖.

The homoskedastic error covariance matrix has the following simple form:

𝐷𝐷𝐷 = 𝜎2𝐼𝐼𝐼𝑛 =
⎛⎜⎜⎜⎜
⎝

𝜎2 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

⎞⎟⎟⎟⎟
⎠

.
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In this case, the sampling variance simplifies to:

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

This is the Gauss-Markov setting, in which OLS is the Best Linear Unbiased Estimator
(BLUE).

Heteroskedasticity

If the sample is i.i.d., but 𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) depends on 𝑋𝑋𝑋𝑖, the errors are heteroskedastic:

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2(𝑋𝑋𝑋𝑖) = 𝜎2
𝑖 .

For instance, in a regression of wage on gender, the wage variability might differ between men
and women.

In this case, 𝐷𝐷𝐷 remains diagonal but no longer proportional to the identity matrix:

𝐷𝐷𝐷 =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

.

The sampling variance becomes:

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 [
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] (𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

Clustered Sampling

For clustered observations we can use the notation (𝑋𝑋𝑋𝑖𝑔, 𝑌𝑖𝑔) for 𝑖 = 1, … , 𝑛𝑔 observations in
cluster 𝑔 = 1, … , 𝐺:

𝑌𝑖𝑔 = 𝑋𝑋𝑋′
𝑖𝑔𝛽𝛽𝛽 + 𝑢𝑖𝑔, 𝑖 = 1, … , 𝑛𝑔, 𝑔 = 1, … , 𝐺.

We assume:

(i) Weak exogeneity within clusters: 𝐸[𝑢𝑖𝑔 ∣ 𝑋𝑋𝑋𝑔] = 0 for all 𝑔 = 1, … , 𝐺.
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(ii) Independence across clusters: (𝑌𝑌𝑌 1𝑔, … , 𝑌𝑛𝑔𝑔,𝑋𝑋𝑋′
1𝑔, … ,𝑋𝑋𝑋′

𝑛𝑔𝑔) are i.i.d. for 𝑔 = 1, … , 𝐺.

This together ensures strict exogenity and unbiasedness of OLS, but allow for arbitrary corre-
lation of errors within each cluster. The covariance matrix 𝐷𝐷𝐷 has a block-diagonal form:

𝐷𝐷𝐷 =
⎛⎜⎜⎜⎜
⎝

𝐷𝐷𝐷1 0 ⋯ 0
0 𝐷𝐷𝐷2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐷𝐷𝐷𝐺

⎞⎟⎟⎟⎟
⎠

,

where each block 𝐷𝐷𝐷𝑔 is an 𝑛𝑔 × 𝑛𝑔 matrix capturing the error covariances within cluster 𝑔:

𝐷𝐷𝐷𝑔 =
⎛⎜⎜⎜⎜⎜
⎝

𝐸[𝑢2
1𝑔|𝑋𝑋𝑋] 𝐸[𝑢1𝑔𝑢2𝑔|𝑋𝑋𝑋] ⋯ 𝐸[𝑢1𝑔𝑢𝑛𝑔𝑔|𝑋𝑋𝑋]

𝐸[𝑢2𝑔𝑢1𝑔|𝑋𝑋𝑋] 𝐸[𝑢2
2𝑔|𝑋𝑋𝑋] ⋯ 𝐸[𝑢2𝑔𝑢𝑛𝑔𝑔|𝑋𝑋𝑋]

⋮ ⋮ ⋱ ⋮
𝐸[𝑢𝑛𝑔𝑔𝑢1𝑔|𝑋𝑋𝑋] 𝐸[𝑢𝑛𝑔𝑔𝑢2𝑔|𝑋𝑋𝑋] ⋯ 𝐸[𝑢2

𝑛𝑔𝑔|𝑋𝑋𝑋]

⎞⎟⎟⎟⎟⎟
⎠

.

The middle part of the sandwich form of the covariance matrix 𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) becomes:

𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 =
𝐺

∑
𝑔=1

𝐸[(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)
′
∣𝑋𝑋𝑋].

Time Series Data

In time series regressions, errors 𝑢𝑡 are often serially correlated. A typical example is an
AR(1) process:

𝑢𝑡 = 𝜙𝑢𝑡−1 + 𝜀𝑡,
where |𝜙| < 1 and 𝜀𝑡 is i.i.d. with mean 0 and variance 𝜎2

𝜀 .

Then the autocovariance structure is:

𝐶𝑜𝑣(𝑢𝑡, 𝑢𝑡−ℎ) = 𝜎2𝜙ℎ, for ℎ ≥ 0,
where

𝜎2 = 𝜎2
𝜀

1 − 𝜙2 .

The resulting covariance matrix 𝐷𝐷𝐷 has a Toeplitz structure:

𝐷𝐷𝐷 = 𝜎2
⎛⎜⎜⎜⎜⎜⎜
⎝

1 𝜙 𝜙2 ⋯ 𝜙𝑛−1

𝜙 1 𝜙 ⋯ 𝜙𝑛−2

𝜙2 𝜙 1 ⋯ 𝜙𝑛−3

⋮ ⋮ ⋮ ⋱ ⋮
𝜙𝑛−1 𝜙𝑛−2 𝜙𝑛−3 ⋯ 1

⎞⎟⎟⎟⎟⎟⎟
⎠

.
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5.4 Gaussian Regression

The Gaussian regression model builds on the linear regression framework by adding a dis-
tributional assumption. It assumes an i.i.d. sample and that the error terms are conditionally
normally distributed:

𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) (5.3)

That is, conditional on the regressors, the error has mean zero (exogeneity), constant variance
(homoskedasticity), and a normal distribution. This assumption implies that the OLS esti-
mator itself is normally distributed, since it is a linear combination of normally distributed
errors:

̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋 ∼ 𝒩(𝛽𝛽𝛽, 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1).

In particular, each standardized coefficient follows a standard normal distribution:

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
∼ 𝒩(0, 1),

with conditional standard deviation

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋) = 𝜎√(𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑗𝑗 .

Classical Standard Errors

The conditional standard deviation of ̂𝛽𝑗 is unknown because the population error variance 𝜎2

is unknown.

A standard error of ̂𝛽𝑗 is an estimator of the conditional standard deviation. To construct
a valid standard error under this setup, we can use the adjusted residual variance to estimate
𝜎2:

𝑠2
𝑢̂ = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

The classical standard error (valid under homoskedasticity) is defined as:

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) = 𝑠𝑢̂√(𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑗𝑗 .

Under the Gaussian assumption Equation 5.3, ̂𝛽𝛽𝛽 and 𝑠2
𝑢̂ are independent and 𝑠2

𝑢̂ has the
following property:

(𝑛 − 𝑘)𝑠2
𝑢̂

𝜎2 ∼ 𝜒2
𝑛−𝑘.

86



This allows us to derive the exact distribution of the standardized OLS coefficient when we
replace the population standard deviation with its sample estimate (the standard error):

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
=

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
⋅ 𝜎

𝑠𝑢̂
∼ 𝒩(0, 1)

√𝜒2
𝑛−𝑘/(𝑛 − 𝑘)

= 𝑡𝑛−𝑘

This means that the OLS coefficient standardized with the homoskedastic standard error in-
stead of the standard deviation follows a 𝑡-distribution with 𝑛 − 𝑘 degrees of freedom.

For a refresher on the normal and 𝑡-distribution, see
Probability Tutorial Part 4

To estimate the full sampling covariance matrix 𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋), the classical covariance matrix
estimator is:

𝑉𝑉𝑉 ℎ𝑜𝑚 = 𝑠2
𝑢̂(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

## classical homoskedastic covariance matrix estimator:
vcov(fit)

(Intercept) education female
(Intercept) 0.18825476 -0.0127486354 -0.0089269796
education -0.01274864 0.0009225111 -0.0002278021
female -0.00892698 -0.0002278021 0.0284200217

Classical standard errors 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) are the square roots of the diagonal entries:

## classical standard errors:
sqrt(diag(vcov(fit)))

(Intercept) education female
0.43388334 0.03037287 0.16858239

They are also displayed in parentheses in a typical regression summary table:

library(modelsummary)
modelsummary(fit, gof_map = "none")

The argument gof_map = "none" omits all goodness of fit statistics like R-squared and
RMSE.
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(1)
(Intercept) −14.082

(0.434)
education 2.958

(0.030)
female −7.533

(0.169)

Confidence Intervals

A confidence interval is a range of values that is likely to contain the true population parameter
with a specified confidence level or coverage probability, often expressed as a percentage
(e.g., 95%).

A (1 − 𝛼) confidence interval for 𝛽𝑗 is an interval 𝐼1−𝛼 such that

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼.
Under the Gaussian assumption Equation 5.3, this property is satisfied for the classical ho-
moskedastic confidence interval:

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑡𝑛−𝑘,1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡𝑛−𝑘,1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)],

where 𝑡𝑛−𝑘,1−𝛼/2 is the 1 − 𝛼/2-quantile from the t-distribution with 𝑛 − 𝑘 degrees of freedom.
Common coverage probabilities are 0.90, 0.95, 0.99, and 0.999.

Table 5.1: Student’s 𝑡-distribution quantiles

df 0.95 0.975 0.995 0.9995
1 6.31 12.71 63.66 636.6
2 2.92 4.30 9.92 31.6
3 2.35 3.18 5.84 12.9
5 2.02 2.57 4.03 6.87
10 1.81 2.23 3.17 4.95
20 1.72 2.09 2.85 3.85
50 1.68 2.01 2.68 3.50
100 1.66 1.98 2.63 3.39
→ ∞ 1.64 1.96 2.58 3.29
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(1)
(Intercept) −14.082

[−14.932, −13.231]
education 2.958

[2.899, 3.018]
female −7.533

[−7.863, −7.203]

The last row (indicated by → ∞) shows the quantiles of the standard normal distribution
𝒩(0, 1).
You can display 95% confidence intervals in the modelsummary output using the conf.int
argument:

modelsummary(fit, gof_map = "none", statistic = "conf.int")

Note: the confidence interval is random, while the parameter 𝛽𝑗 is fixed but unknown.

A correct interpretation of a 95% confidence interval is:
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• If we were to repeatedly draw samples and construct a 95% confidence interval from each
sample, about 95% of these intervals would contain the true parameter.

Common misinterpretations to avoid:

• � “There is a 95% probability that the true value lies in this interval.”
• � “We are 95% confident this interval contains the true parameter.”

These mistakes incorrectly treat the parameter as random and the interval as fixed. In reality,
it’s the other way around.

A 95% confidence interval should be understood as a coverage probability: Before observing
the data, there is a 95% probability that the random interval will cover the true parameter.

A helpful visualization:

https://rpsychologist.com/d3/ci/

Limitations of the Gaussian Approach

The Gaussian regression framework assumes:

• Weak exogeneity: 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0
• I.i.d. sample: {(𝑌𝑖,𝑋𝑋𝑋𝑖)}𝑛

𝑖=1
• Homoskedastic, normally distributed errors: 𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2)
• 𝑋𝑋𝑋′𝑋𝑋𝑋 is invertible (i.e. 𝑋𝑋𝑋 has full rank)

While mathematically convenient, these assumptions are often violated in practice. In partic-
ular, the normality assumption implies homoskedasticity and that the conditional distribution
of 𝑌𝑖 given 𝑋𝑋𝑋𝑖 is normal, which is an unrealistic scenario in many economic applications.

Historically, homoskedasticity has been treated as the “default” assumption and heteroskedas-
ticity as a special case. But in empirical work, heteroskedasticity is the norm.

A plot of the absolute value of the residuals against the fitted values shows that individuals
with predicted wages around 10 USD exhibit residuals with lower variance compared to those
with higher predicted wage levels. Hence, the homoskedasticity assumption is implausible:

# Plot of absolute residuals against fitted values
plot(abs(fit$residuals) ~ fit$fitted.values)
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The Q-Q-plot is a graphical tool to help us assess if the errors are conditionally normally
distributed.

Let 𝑢̂(𝑖) be the sorted residuals (i.e. 𝑢̂(1) ≤ … ≤ 𝑢̂(𝑛)). The Q-Q-plot plots the sorted residuals
𝑢̂(𝑖) against the ((𝑖 − 0.5)/𝑛)-quantiles of the standard normal distribution.

If the residuals are lined well on the straight dashed line, there is indication that the distribution
of the residuals is close to a normal distribution.

set.seed(123)
par(mfrow = c(1,2))
## auxiliary regression with simulated normal errors:
fit.aux = lm(rnorm(500) ~ 1)
## Q-Q-plot of the residuals of the auxiliary regression:
qqnorm(residuals(fit.aux))
qqline(residuals(fit.aux))
## Q-Q-plot of the residuals of the wage regression:
qqnorm(residuals(fit))
qqline(residuals(fit))
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In the left plot you see the Q-Q-plot for an example with simulated normally distributed errors,
where the Gaussian regression assumption is satisfied.

The right plot indicates that, in our regression of wage on education and female, the normality
assumption is implausible.

5.5 Heteroskedastic Linear Model

The classical approach to regression relies on strong distributional assumptions: normality and
homoskedasticity of the errors. While this enables exact inference in small samples, it is rarely
justified in empirical applications.

The modern econometric approach avoids such assumptions and instead relies on asymp-
totic approximations under weaker conditions (i.e., finite kurtosis instead of normality and
homoskedasticity).

Heteroskedastic Linear Model

We assume that the sample {(𝑌𝑖,𝑋𝑋𝑋′
𝑖)}𝑛

𝑖=1 satisfies the linear regression equation

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛,

under the following conditions:

• (A1) 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0 (weak exogeneity)

• (A2) {(𝑌𝑖,𝑋𝑋𝑋′
𝑖)}𝑛

𝑖=1 is an i.i.d. sample (random sampling)
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• (A3) 𝑘𝑢𝑟(𝑌𝑖) < ∞ and 𝑘𝑢𝑟(𝑋𝑖𝑗) < ∞ for all 𝑗 = 1, … , 𝑘
(bounded kurtosis: large outliers are unlikely)

• (A4) ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 is invertible (OLS is well defined)

Under heteroskedasticity, the error variance may depend on the regressor:

𝜎2
𝑖 = Var(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖),

and the conditional standard deviation of ̂𝛽𝑗 is

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋) =
√√
⎷

[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]
𝑗𝑗

.

Unlike in the Gaussian case, the standardized OLS coefficient does not follow a standard
normal distribution in finite samples:

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
≁ 𝒩(0, 1).

However, for large samples, the central limit theorem guarantees that the OLS estimator
is asymptotically normal:

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
𝑑→ 𝒩(0, 1) as 𝑛 → ∞.

This result holds because the OLS estimator can be expressed as:

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) = √𝑛(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖

= ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 1√𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖,

where:

• By the law of large numbers:

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] = 𝑄𝑄𝑄,

• And by the central limit theorem:

1√𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖
𝑑→ 𝒩(000,ΩΩΩ), where ΩΩΩ = 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖].
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For more details on stochastic convergence and the central limit theorem, see Proba-
bility Tutorial Part 4

Asymptotic Distribution of OLS Estimator

Under the heteroskedastic linear model:
√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000, 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1),

where 𝑄𝑄𝑄 = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] and ΩΩΩ = 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖].

This asymptotic distribution forms the basis for heteroskedasticity-robust inference.

5.6 Heteroskedasticity-Robust Standard Errors

The asymptotic distribution of the OLS estimator under heteroskedasticity depends on two
population matrices:

• 𝑄𝑄𝑄 = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖], and

• ΩΩΩ = 𝐸[𝑢2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]

While 𝑄𝑄𝑄 can be consistently estimated by its sample counterpart,

𝑄𝑄𝑄 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖,

estimating ΩΩΩ is more challenging because the error terms 𝑢𝑖 are unobserved.

To overcome this, we replace the unobserved 𝑢𝑖 with the OLS residuals:

𝑢̂𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽.

This yields a consistent estimator of ΩΩΩ:

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖.

Substituting into the asymptotic variance formula, we obtain the heteroskedasticity-
consistent covariance matrix estimator, also known as the White estimator (White,
1980):
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White (HC0) Estimator

𝑉𝑉𝑉 ℎ𝑐0 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 (
𝑛

∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

This estimator remains consistent for 𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) even if the errors are heteroskedastic. How-
ever, it can be biased downward in small samples.

HC1 Correction

To reduce small-sample bias, MacKinnon and White (1985) proposed the HC1 correction,
which rescales the estimator using a degrees-of-freedom adjustment:

𝑉𝑉𝑉 ℎ𝑐1 = 𝑛
𝑛 − 𝑘 ⋅ (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 (

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) (𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

The HC1 standard error for the 𝑗-th coefficient is then:

𝑠𝑒ℎ𝑐1( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐1]𝑗𝑗.

These standard errors are widely used in applied work because they are valid under general
forms of heteroskedasticity and easy to compute. Most statistical software (including R and
Stata) uses HC1 by default when robust inference is requested.

Robust Confidence Intervals

Using heteroskedasticity-robust standard errors, we can construct confidence intervals that
remain valid under heteroskedasticity.

For large samples, a (1 − 𝛼) confidence interval for 𝛽𝑗 is:

𝐼1−𝛼 = [ ̂𝛽𝑗 ± 𝑧1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑐1( ̂𝛽𝑗)] ,

where 𝑧1−𝛼/2 is the standard normal critical value (e.g., 𝑧0.975 = 1.96 for a 95% interval).
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For moderate sample sizes, using a 𝑡-distribution with 𝑛 − 𝑘 degrees of freedom gives better
finite-sample performance:

𝐼1−𝛼 = [ ̂𝛽𝑗 ± 𝑡𝑛−𝑘,1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑐1( ̂𝛽𝑗)] .

These robust intervals satisfy the asymptotic coverage property:

lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼.

Why software uses 𝑡-quantiles:

Under heteroskedasticity, there’s no theoretical justification for using 𝑡-quantiles instead
of normal ones. However, most software use 𝑡𝑛−𝑘 by default to match the homoskedastic
case and improve finite-sample performance. For large samples, this makes little differ-
ence, as 𝑡-quantiles converge to standard normal quantiles as degrees of freedom grow
large.

The fixest package provides the feols function to estimate regression models with
heteroskedasticity-robust standard errors. The vcov argument allows you to specify the type
of covariance matrix estimator to use.

library(fixest)
fit.hom = feols(wage ~ education + female, data = cps, vcov = "iid")
fit.het = feols(wage ~ education + female, data = cps, vcov = "hc1")

mymodels = list(
"Homoskedastic" = fit.hom,
"Heteroskedastic" = fit.het

)
## Standard error comparison:
modelsummary(mymodels)

## Confidence interval comparison:
modelsummary(mymodels, statistic = "conf.int")

AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are statistical
measures that evaluate model quality by balancing goodness-of-fit against complexity. A
smaller value indicates a better model. In this example we see the same values for both
models because the regression equations are the same and only the standard errors differ.
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Homoskedastic Heteroskedastic
(Intercept) −14.082 −14.082

(0.434) (0.500)
education 2.958 2.958

(0.030) (0.040)
female −7.533 −7.533

(0.169) (0.162)
Num.Obs. 50 742 50 742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441 515.9 441 515.9
BIC 441 542.4 441 542.4
RMSE 18.76 18.76
Std.Errors IID Heteroskedasticity-robust

Homoskedastic Heteroskedastic
(Intercept) −14.082 −14.082

[−14.932, −13.231] [−15.062, −13.102]
education 2.958 2.958

[2.899, 3.018] [2.880, 3.037]
female −7.533 −7.533

[−7.863, −7.203] [−7.850, −7.216]
Num.Obs. 50 742 50 742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441 515.9 441 515.9
BIC 441 542.4 441 542.4
RMSE 18.76 18.76
Std.Errors IID Heteroskedasticity-robust
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5.7 R-codes

metrics-sec05.R
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