5 Regression Inference

Recall the linear regression framework. We observe a sample {(X;,Y;)}" ; and assume

Y,=XB+u;, PElu|X,;]=0,

where X, is a k-dimensional regressor vector (including an intercept), B is the unknown pa-
rameter vector, and u; is the error term. In matrix form we have

Y=XB+u,

where X is the n x k design matrix (its rows are: X), Y is the n-vector of dependent variables,
and u is the n-vector of errors.

The OLS estimator ,B is obtained by minimizing the sum of squared residuals:

_ ‘ - xp)2
ﬂ—argmbm;(Yz Xb)

1=

- (Zn:Xz‘Xg)_l zn:Xz‘Yz‘
i=1 i=1

= (X'X)"L(XY).

5.1 Strict Exogeneity

The weak exogeneity condition

Blu; | X;] =0

ensures that the regressors are uncorrelated with the error at the individual observation level.
However, this condition is not sufficient to guarantee that the OLS estimator is unbiased.
It still allows for u; to be correlated with regressors from other observations (X for j # 1),
which can lead to a biased estimation.

To ensure unbiasedness, we require the stronger condition of strict exogeneity:

Elu; | X;] =0 foreachj=1,..,n,
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or, equivalently in matrix form:

Elu| X] =0.

Strict exogeneity requires the entire vector of errors u to be mean independent of the full
regressor matrix X. That is, no systematic relationship exists between any regressors and any
error term across observations.

1 Note

Under i.i.d. sampling, strict exogeneity typically holds automatically: independence
across observations ensures u; is uncorrelated with X for j # i.

However, strict exogeneity may fail in dynamic time series settings, e.g.:

Y, =81 +8Y, 1 +u, EluwlY, ,]=0. (5.1)

Here, u, is uncorrelated with Y, ;, but it is correlated through Equation 5.1 with Y, which is
the regressor for the dependent variable Y, ;:

Yier =01+ B2y + vy, Elug Y] =0. (5.2)

Therefore the error of Equation 5.1 is correlated with the regressor of Equation 5.2, violating
strict exogeneity.

5.2 Unbiasedness

To derive the unbiasedness of the OLS estimator, recall the model:

Y =XB+u.

Plugging this into the OLS formula:

~

B=(X'X) XY
(X'X)"' X' (XB +u)
=B+ (X'X) X u.

Taking the conditional expectation:

EB|X] =B+ (X'X)'X'Elu| X].

Under strict exogeneity, E[u | X| =0, so:
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Taking the expectation over the sampling distribution of X:
E[B] = E[E[B | X]] = B.
Thus, each element of the OLS estimator is unbiased:

E[Bj] :BJ fOI’j:L...,k.

Under strict exogeneity, the OLS estimator B is unbiased:
E[B] =B

Even when strict exogeneity fails (as in time-dependent settings) asymptotic unbiasedness
may still hold:

lim E[B] = B.

n—oo

For time series regressions, OLS remains asymptotically unbiased if far distant future regressors
are independent of current errors, and the underlying relationship remains stable over time,
i.e., there are no structural changes in the conditional mean function over time.

5.3 Sampling Variance of OLS

The OLS estimator B provides a point estimate of the unknown population parameter 8.
For example, in the regression

wage, = () + Byedu; + Bzfem,; + u,,

we obtain specific coefficient estimates:

cps = read.csv("cps.csv")
fit = Ilm(wage ~ education + female, data = cps)

fit |> coef()

(Intercept)  education female
-14.081788 2.958174 -7.533067
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The estimate for education is ,52 = 2.958. However, this point estimate tells us nothing
about how far it might be from the true value §,. That is, it does not reflect estimation

uncertainty, which arises because ,B depends on a finite sample that could have turned out
differently.

Larger samples tend to reduce estimation uncertainty, but in practice we only observe one
finite sample. To quantify this uncertainty, we study the sampling variance of the OLS
estimator:

Var(B | X),
the conditional variance of B given the regressor matrix X.
General formula for sampling variance of OLS:

Let D = Var(u | X) be the conditional covariance matrix of the error terms. Then,
Var(B| X) = (X'X) ' X'DX(X'X)?
This follows from R
B=B+(X'X)"'X'u
together with the general rule that for any matrix A,

Var(Au) = AVar(u) A’

Depending on the structure of the data and the behavior of the error term, this expression
takes different forms:

Homoskedasticity

Let {(X;,Y;)}, be an i.i.d. sample and let the error term be homoskedastic, meaning
Var(u; | X;) = o? for all i.

Homoskedasticity means that the variance of the error does not depend on the value of the
regressor. For instance, in a regression of wage on female, homoskedasticity means that men
and women have the same error variance. Homoskedasticity holds if the error u, is independent
of the regressor X,.

The homoskedastic error covariance matrix has the following simple form:

g2 0 - 0

2
D=c1,=|" 0
0 0 o2
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In this case, the sampling variance simplifies to:

Var(B | X) = o>(X'X)"L.

This is the Gauss-Markov setting, in which OLS is the Best Linear Unbiased Estimator
(BLUE).

Heteroskedasticity
If the sample is i.i.d., but Var(u, | X;) depends on X, the errors are heteroskedastic:
Var(u; | X;) = 0*(X;) = 07.

For instance, in a regression of wage on gender, the wage variability might differ between men
and women.

In this case, D remains diagonal but no longer proportional to the identity matrix:

a2 0 0
p_|0 o3 0
0 0 o2

The sampling variance becomes:

Var(B| X) = (X' X)* [zn: agxixg] (X'X)1.

Clustered Sampling

For clustered observations we can use the notation (X, ,Y; ) for i = 1,...,n, observations in
cluster g =1, ...,G:

Y;g:X;gﬂ_}_uiga 7;:]_,...777/9’ g:]_”G

We assume:

(i) Weak exogeneity within clusters: Efu;, | X |=0forallg=1,...,G.
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(ii) Independence across clusters: (Y’ .,Yngg,X/ ,X;ng) are iid. forg=1,...,G.

1gs ** 19>

This together ensures strict exogenity and unbiasedness of OLS, but allow for arbitrary corre-
lation of errors within each cluster. The covariance matrix D has a block-diagonal form:

D, 0 - 0
D_ 0 D, - 0
0 0 - Dg

where each block D is an n, X n, matrix capturing the error covariances within cluster g:

E[u%g’X} E[ulgu2g|X] E[ulgungg‘X]
D — E[u2gulg|X} E[u%g|X] E[u2gungg|X]
9 : : :
E[unggu1g|X] E[UHQQUZQ‘X] E[u?’bgg X]

~

The middle part of the sandwich form of the covariance matrix Var(8 | X) becomes:

X'DX = XG; E [( Z; X gt ) 2 X gt ) / ’X] .
= e =

Time Series Data

In time series regressions, errors u, are often serially correlated. A typical example is an
AR(1) process:
Uy = Puy_y + &y,

2

where |¢| < 1 and ¢, is i.i.d. with mean 0 and variance oZ.

Then the autocovariance structure is:
Cov(uy,u,_p,) = o*¢", for h >0,

where

2
2 g

The resulting covariance matrix D has a Toeplitz structure:

1 (;5 ¢2 ¢n71
6 1 ¢ - g
D = 02 ¢2 ¢ 1 ¢n73

¢n.71 (1)77:72 qsn;B 1
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5.4 Gaussian Regression

The Gaussian regression model builds on the linear regression framework by adding a dis-
tributional assumption. It assumes an i.i.d. sample and that the error terms are conditionally

normally distributed:

That is, conditional on the regressors, the error has mean zero (exogeneity), constant variance
(homoskedasticity), and a normal distribution. This assumption implies that the OLS esti-
mator itself is normally distributed, since it is a linear combination of normally distributed
errors:

BIX ~N(B.o*(X' X)),
In particular, each standardized coefficient follows a standard normal distribution:

BB v,
sd(B; | X)

with conditional standard deviation

sd(B; | X) = 0/ (X'X)3;.

Classical Standard Errors

The conditional standard deviation of Bj is unknown because the population error variance o2

is unknown.

A standard error of Bj is an estimator of the conditional standard deviation. To construct
a valid standard error under this setup, we can use the adjusted residual variance to estimate

2
1 n
2 _ ~9
§2 = E uz.
U o —k 4 v
=1

o°:
The classical standard error (valid under homoskedasticity) is defined as:

Sehom(ﬁj) = Sa (X/X);]l

Under the Gaussian assumption Equation 5.3, B and s% are independent and s% has the
following property:
(n—k)s2

2
NX .
0_2 n—k
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This allows us to derive the exact distribution of the standardized OLS coefficient when we
replace the population standard deviation with its sample estimate (the standard error):
éb‘_ﬁ% B ﬁ%"’ﬁ% g ]V(O,l) t
— —= — - — — n
Sepom(B; | X)  sd(B; | X) Sa X2 ./ (n—k)

This means that the OLS coefficient standardized with the homoskedastic standard error in-
stead of the standard deviation follows a t-distribution with n — k degrees of freedom.

@ For a refresher on the normal and ¢-distribution, see
Probability Tutorial Part 4

To estimate the full sampling covariance matrix Var(ﬁ | X), the classical covariance matrix
estimator is:

f/'\hmn = S%(X/X)il'

## classical homoskedastic covariance matrixz estimator:
vecov (fit)

(Intercept) education female
(Intercept) 0.18825476 -0.0127486354 -0.0089269796
education -0.01274864 0.0009225111 -0.0002278021
female -0.00892698 -0.0002278021 0.0284200217

Classical standard errors sehom(ﬁj) are the square roots of the diagonal entries:

## classical standard errors:
sqrt (diag(vcov(fit)))

(Intercept)  education female
0.43388334 0.03037287 0.16858239

They are also displayed in parentheses in a typical regression summary table:

library(modelsummary)

modelsummary(fit, gof_map = "none")
The argument gof_map = "none" omits all goodness of fit statistics like R-squared and
RMSE.
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(1)
(Intercept) —14.082

(0.434)
education 2.958

(0.030)
female —7.533

(0.169)

Confidence Intervals

A confidence interval is a range of values that is likely to contain the true population parameter
with a specified confidence level or coverage probability, often expressed as a percentage
(e.g., 95%).

A (1 — a) confidence interval for §; is an interval I;_, such that

Under the Gaussian assumption Equation 5.3, this property is satisfied for the classical ho-
moskedastic confidence interval:

Ilfa = ﬁj - tnfk,lfa/Z : Sehom(ﬂj); Bj + tnfk,lfa/Z ' Sehom(ﬂj> )

where t,,_1 1_, /o is the 1 —a/2-quantile from the t-distribution with n — k degrees of freedom.
Common coverage probabilities are 0.90, 0.95, 0.99, and 0.999.

Table 5.1: Student’s t-distribution quantiles

df 0.95 0.975 0.995 0.9995

1 6.31 12.71 63.66 636.6
2 292 430 992 316
3 235 3.18 584 129
) 2.02 257 4.03 6.87

10 1.81 223 317 4.95
20 1.72 2.09 285 3.8
50 1.68 201 268 3.50
100 1.66 1.98 2.63 3.39
—o0 164 196 258 3.29
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(1)

(Intercept) —14.082
[—14.932, —13.231]
education 2.958
[2.899, 3.018]
female —7.533
[—7.863, —7.203]

The last row (indicated by — o0) shows the quantiles of the standard normal distribution
N(0,1).

You can display 95% confidence intervals in the modelsummary output using the conf.int
argument:

modelsummary(fit, gof_map = "none", statistic = "conf.int")

Note: the confidence interval is random, while the parameter ; is fixed but unknown.

I'VEAGAIN,

- g

imgflip.com

A correct interpretation of a 95% confidence interval is:
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o If we were to repeatedly draw samples and construct a 95% confidence interval from each
sample, about 95% of these intervals would contain the true parameter.

Common misinterpretations to avoid:

e “There is a 95% probability that the true value lies in this interval.”
e “We are 95% confident this interval contains the true parameter.”

These mistakes incorrectly treat the parameter as random and the interval as fixed. In reality,
it’s the other way around.

A 95% confidence interval should be understood as a coverage probability: Before observing
the data, there is a 95% probability that the random interval will cover the true parameter.

A helpful visualization:

https://rpsychologist.com/d3/ci/

Limitations of the Gaussian Approach

The Gaussian regression framework assumes:

o Weak exogeneity: Flu; | X,] =0

o Lid. sample: {(Y;,X,)}",

« Homoskedastic, normally distributed errors: u,;|X; ~ N (0, 0?)
o X'X is invertible (i.e. X has full rank)

While mathematically convenient, these assumptions are often violated in practice. In partic-
ular, the normality assumption implies homoskedasticity and that the conditional distribution
of Y; given X, is normal, which is an unrealistic scenario in many economic applications.

Historically, homoskedasticity has been treated as the “default” assumption and heteroskedas-
ticity as a special case. But in empirical work, heteroskedasticity is the norm.

A plot of the absolute value of the residuals against the fitted values shows that individuals
with predicted wages around 10 USD exhibit residuals with lower variance compared to those
with higher predicted wage levels. Hence, the homoskedasticity assumption is implausible:

# Plot of absolute residuals against fitted values
plot(abs(fit$residuals) ~ fit$fitted.values)
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The Q-Q-plot is a graphical tool to help us assess if the errors are conditionally normally
distributed.

Let ;) be the sorted residuals (i.e. 4y < ... < 1,)). The Q-Q-plot plots the sorted residuals
;) against the ((i —0.5)/n)-quantiles of the standard normal distribution.

If the residuals are lined well on the straight dashed line, there is indication that the distribution
of the residuals is close to a normal distribution.

set.seed(123)

par (mfrow = c(1,2))

## auziliary regresston with simulated mormal errors:
fit.aux = Im(rnorm(500) ~ 1)

## (-(-plot of the residuals of the auziliary regression:
qqnorm(residuals(fit.aux))

qqline(residuals(fit.aux))

## (-(-plot of the residuals of the wage regression:
qqnorm(residuals(fit))

qqline(residuals(fit))
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Normal Q—-Q Plot Normal Q-Q Plot
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In the left plot you see the Q-Q-plot for an example with simulated normally distributed errors,
where the Gaussian regression assumption is satisfied.

The right plot indicates that, in our regression of wage on education and female, the normality
assumption is implausible.

5.5 Heteroskedastic Linear Model

The classical approach to regression relies on strong distributional assumptions: normality and
homoskedasticity of the errors. While this enables exact inference in small samples, it is rarely
justified in empirical applications.

The modern econometric approach avoids such assumptions and instead relies on asymp-
totic approximations under weaker conditions (i.e., finite kurtosis instead of normality and
homoskedasticity).

Heteroskedastic Linear Model

We assume that the sample {(Y;, X))}, satisfies the linear regression equation
Y, =X B+u;, i=1..,n,
under the following conditions:
e (Al) E[u;|X;] =0 (weak exogeneity)

o« (A2) {(V;, X))}, is an ii.d. sample (random sampling)
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» (A3) kur(Y;) < oo and kur(X;;) <ocoforall j=1,..,k
(bounded kurtosis: large outliers are unlikely)

« (A4) Z?:l X, X is invertible (OLS is well defined)
Under heteroskedasticity, the error variance may depend on the regressor:
o} = Var(u; | X;),

and the conditional standard deviation of @ is

sd(B;| X) = Q [<X’X>1 ( Z 02X X;) <X'X>1]

Jj
Unlike in the Gaussian case, the standardized OLS coefficient does not follow a standard
normal distribution in finite samples:

B;— B

= » N(0,1).
sd(B; | X) oy

However, for large samples, the central limit theorem guarantees that the OLS estimator
is asymptotically normal:

. d
———— =5 N(0,1) asn — oc.

This result holds because the OLS estimator can be expressed as:

n

ViR~ B) = Vi (ZXX) > X

1< ,
- (3 xx)

-1 1 n
—SN" X u,
\/ﬁ Z:ZI 777

where:

e By the law of large numbers:
1 S / p /
n ZXiXi - B[X,X]] =Q,
i—1
¢ And by the central limit theorem:

1 & d
> X, h = Flu; X, X]].
NP> X,u; - N(0,92), where Q [u; X, X7]
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@ For more details on stochastic convergence and the central limit theorem, see Proba-
bility Tutorial Part 4

Asymptotic Distribution of OLS Estimator

Under the heteroskedastic linear model:

Vi(B—B) 5 N0, Q0Q),
where Q@ = E[X,X/] and Q = E[u? X, X]].

This asymptotic distribution forms the basis for heteroskedasticity-robust inference.

5.6 Heteroskedasticity-Robust Standard Errors

The asymptotic distribution of the OLS estimator under heteroskedasticity depends on two
population matrices:

e Q=FE[X,X]], and
. 0= FulX,X]
While @ can be consistently estimated by its sample counterpart,

O )

estimating € is more challenging because the error terms u,; are unobserved.

To overcome this, we replace the unobserved u; with the OLS residuals:

"&i = Yz _XQB'

This yields a consistent estimator of €:

Substituting into the asymptotic variance formula, we obtain the heteroskedasticity-
consistent covariance matrix estimator, also known as the White estimator (White,
1980):
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White (HCO0) Estimator

Vieo = (X'X)~ (Z 22X, X, ) (X'X)!

This estimator remains consistent for Var([‘} | X) even if the errors are heteroskedastic. How-
ever, it can be biased downward in small samples.

HC1 Correction

To reduce small-sample bias, MacKinnon and White (1985) proposed the HC1 correction,
which rescales the estimator using a degrees-of-freedom adjustment:

17 n / — . ~ / / —
Vier = ki (X'x)~ (Z“?szz> (X' X)™!
=1

The HC1 standard error for the j-th coefficient is then:
5€hc1(5j) = [thl]jj

These standard errors are widely used in applied work because they are valid under general
forms of heteroskedasticity and easy to compute. Most statistical software (including R and
Stata) uses HC1 by default when robust inference is requested.

Robust Confidence Intervals

Using heteroskedasticity-robust standard errors, we can construct confidence intervals that
remain valid under heteroskedasticity.

For large samples, a (1 — «) confidence interval for j3; is:

Ilfoz = [53 + Rl—a)2 * Sehcl(ﬁj)] )

where z;_ /5 is the standard normal critical value (e.g., 2y 975 = 1.96 for a 95% interval).
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For moderate sample sizes, using a t-distribution with n — k degrees of freedom gives better

finite-sample performance:

~

L = [Bj Tt k1a/2- 56hc1(5j)] .

These robust intervals satisfy the asymptotic coverage property:

nh_)Igo PBjel_,)=1-a.

1 Why software uses t-quantiles:

large.

Under heteroskedasticity, there’s no theoretical justification for using t-quantiles instead
of normal ones. However, most software use ¢,,_,. by default to match the homoskedastic
case and improve finite-sample performance. For large samples, this makes little differ-
ence, as t-quantiles converge to standard normal quantiles as degrees of freedom grow

The fixest package provides the feols function to estimate regression models with
heteroskedasticity-robust standard errors. The vcov argument allows you to specify the type

of covariance matrix estimator to use.

library(fixest)
fit.hom = feols(wage ~ education + female, data
fit.het = feols(wage ~ education + female, data

mymodels = list(
"Homoskedastic" = fit.hom,
"Heteroskedastic" = fit.het

)

## Standard error comparison:

modelsummary (mymodels)

## Confidence interval comparison:
modelsummary (mymodels, statistic = "conf.int")

"iid")
"hCl")

cps, vcov
cps, vcov

AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are statistical
measures that evaluate model quality by balancing goodness-of-fit against complexity. A
smaller value indicates a better model. In this example we see the same values for both
models because the regression equations are the same and only the standard errors differ.
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Homoskedastic Heteroskedastic
(Intercept) —14.082 —14.082
(0.434) (0.500)
education 2.958 2.958
(0.030) (0.040)
female —7.533 —7.533
(0.169) (0.162)
Num.Obs. 50742 50742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441515.9 441515.9
BIC 441542 .4 441542.4
RMSE 18.76 18.76
Std.Errors 11D Heteroskedasticity-robust
Homoskedastic Heteroskedastic
(Intercept) —14.082 —14.082
[—14.932, —13.231] [—15.062, —13.102]
education 2.958 2.958
[2.899, 3.018] [2.880, 3.037]
female —7.533 —7.533
[—7.863, —7.203] [—7.850, —7.216]
Num.Obs. 50742 50742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441515.9 441515.9
BIC 441542 .4 441542.4
RMSE 18.76 18.76
Std.Errors 11D Heteroskedasticity-robust

97



5.7 R-codes

metrics-sec05.R
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