
6 Robust Testing

In applied regression analysis, we often want to assess whether a regressor has a statistically
significant relationship with the outcome variable (conditional on other regressors).

6.1 t-Test

The most common hypothesis test evaluates whether a regression coefficient equals zero:

𝐻0 ∶ 𝛽𝑗 = 0 vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0.

This corresponds to testing whether the marginal effect of the regressor 𝑋𝑖𝑗 on the outcome
𝑌𝑖 is zero, holding other regressors constant.

We use the t-statistic:

𝑇𝑗 =
̂𝛽𝑗

𝑠𝑒( ̂𝛽𝑗)
,

where 𝑠𝑒( ̂𝛽𝑗) is a standard error.

You may use the classical standard error if you have strong evidence that the errors are
homoskedastic. However, in most economic applications, heteroskedasticity-robust standard
errors are more reliable.

Under the null, 𝑇𝑗 follows approximately a 𝑡𝑛−𝑘 distribution. We reject 𝐻0 at the significance
level 𝛼 if:

|𝑇𝑗| > 𝑡𝑛−𝑘,1−𝛼/2.

This decision rule is equivalent to checking whether the confidence interval for 𝛽𝑗 includes 0:

• Reject 𝐻0 if 0 lies outside the 1 − 𝛼 confidence interval
• Fail to reject (accept) 𝐻0 if 0 lies inside the 1 − 𝛼 confidence interval
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6.2 p-Value

The p-value is a criterion to reach a hypothesis test decision conveniently:

reject 𝐻0 if p-value < 𝛼
do not reject 𝐻0 if p-value ≥ 𝛼

Formally, the p-value represents the probability of observing a test statistic as extreme or more
extreme than the one we computed, assuming 𝐻0 is true. For the t-test, the p-value is:

𝑝-value = 𝑃(|𝑇 | > |𝑇𝑗| ∣ 𝐻0 is true)
Here, 𝑇 is a random variable following the null distribution 𝑍 ∼ 𝑡𝑛−𝑘, and 𝑇𝑗 is the observed
value of the test statistic.

Another way of representing the p-values of a t-test is:

𝑝-value = 2(1 − 𝐹𝑡𝑛−𝑘
(|𝑇𝑗|)),

where 𝐹𝑡𝑛−𝑘
is the cumulative distribution function (CDF) of the 𝑡𝑛−𝑘-distribution.

A common misinterpretation of p-values is treating them as the probability that the null
hypothesis is being true. This is incorrect. The p-value is not a statement about the probability
of the null hypothesis itself.
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The correct interpretation is that the p-value represents the probability of observing a test
statistic at least as extreme as the one calculated from our sample, assuming that the null
hypothesis is true.

In other words, a p-value of 0.04 means:

• � NOT “There’s a 4% chance that the null hypothesis is true”
• � INSTEAD “If the null hypothesis were true, there would be a 4% chance of observing

a test statistic this extreme or more extreme”

Small p-values indicate that the observed data would be unlikely under the null hypothesis,
which leads us to reject the null in favor of the alternative. However, they do not tell us
the probability that our alternative hypothesis is correct, nor do they directly measure the
magnitude or significance of the marginal effect.

Relation to Confidence Intervals:

Zero lies outside the (1−𝛼) confidence interval for 𝛽𝑗 if and only if the p-value for testing
𝐻0 ∶ 𝛽𝑗 = 0 is less than 𝛼.

6.3 Significance Stars

Regression tables often use asterisks to indicate levels of statistical significance. Stars summa-
rize statistical significance by comparing the t-statistic to critical values (or equivalently, the
p-value or whether 0 is covered by the confidence interval)

The convention within R is:

Stars p-value t-statistic Confidence interval
*** 𝑝 < 0.001 |𝑇𝑗| > 𝑡𝑛−𝑘,0.995 0 outside 𝐼0.999
** 0.001 ≤ 𝑝 < 0.01 𝑡𝑛−𝑘,0.995 ≥ |𝑇𝑗| >

𝑡𝑛−𝑘,0.975

0 outside 𝐼0.99, but inside 𝐼0.999

* 0.01 ≤ 𝑝 < 0.05 𝑡𝑛−𝑘,0.975 ≥ |𝑇𝑗| > 𝑡𝑛−𝑘,0.95 0 outside 𝐼0.95, but inside 𝐼0.99
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(1) (2)
(Intercept) −14.082*** −14.082***

(0.434) (0.500)
education 2.958*** 2.958***

(0.030) (0.040)
female −7.533*** −7.533***

(0.169) (0.162)
Num.Obs. 50 742 50 742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441 515.9 441 515.9
BIC 441 542.4 441 542.4
RMSE 18.76 18.76
Std.Errors IID Heteroskedasticity-robust

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Significance Stars Convention

Note that most economists use the following significance levels: *** for 1%, ** for 5%,
and * for 10%. In this lecture, we follow the convention of R, which uses the significance
levels *** for 0.1%, ** for 1%, and * for 5%.

Regression Tables

Let’s revisit the regression of wage on education and female.

library(fixest)
library(modelsummary)
cps = read.csv("cps.csv")
fit.hom = feols(wage ~ education + female, data = cps, vcov = "iid")
fit.het = feols(wage ~ education + female, data = cps, vcov = "hc1")
mymodels = list(fit.hom, fit.het)
modelsummary(mymodels, stars = TRUE)
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To see the exact t-statistics and p-values, you can use the summary() function:

summary(fit.hom)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: IID

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.08179 0.433883 -32.4552 < 2.2e-16 ***
education 2.95817 0.030373 97.3953 < 2.2e-16 ***
female -7.53307 0.168582 -44.6848 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 18.8 Adj. R2: 0.179696

summary(fit.het)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.08179 0.500078 -28.1592 < 2.2e-16 ***
education 2.95817 0.040110 73.7512 < 2.2e-16 ***
female -7.53307 0.161644 -46.6027 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 18.8 Adj. R2: 0.179696

All p-values are super small: 2.2e-16 means 2.2 ⋅ 10−16 (15 zeros after the decimal point,
followed by 22).

Let’s also revisit the CASchools dataset and examine four regression models on test scores.

library(AER)
data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read + CASchools$math)/2

fitA = feols(score ~ STR, data = CASchools)
fitB = feols(score ~ STR + english, data = CASchools)
fitC = feols(score ~ STR + english + lunch, data = CASchools)
fitD = feols(score ~ STR + english + lunch + expenditure, data = CASchools)
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(1) (2) (3) (4)
(Intercept) 698.933*** 686.032*** 700.150*** 665.988***

(9.467) (7.411) (4.686) (9.460)
STR −2.280*** −1.101** −0.998*** −0.235

(0.480) (0.380) (0.239) (0.298)
english −0.650*** −0.122*** −0.128***

(0.039) (0.032) (0.032)
lunch −0.547*** −0.546***

(0.022) (0.021)
expenditure 0.004***

(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors IID IID IID IID

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Classical (Homoskedastic) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary(mymodels, stars = TRUE, vcov = "iid")

Robust (HC1) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary(mymodels, stars = TRUE, vcov = "HC1")
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(1) (2) (3) (4)
(Intercept) 698.933*** 686.032*** 700.150*** 665.988***

(10.364) (8.728) (5.568) (10.377)
STR −2.280*** −1.101* −0.998*** −0.235

(0.519) (0.433) (0.270) (0.325)
english −0.650*** −0.122*** −0.128***

(0.031) (0.033) (0.032)
lunch −0.547*** −0.546***

(0.024) (0.023)
expenditure 0.004***

(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors HC1 HC1 HC1 HC1

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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Interpretation of STR coefficient:

• Models A–C: The coefficient is negative and statistically significant. However, when
using robust standard errors, the coefficient in model B becomes only weakly significant.

• Model D: The coefficient remains negative but becomes insignificant when controlling
for expenditure.

As discussed earlier, expenditure is a bad control in this context and should not be used to
estimate a ceteris paribus effect of class size on test scores.

6.4 Testing for Heteroskedasticity: Breusch-Pagan Test

Classical standard errors should only be used if you have statistical evidence that the errors
are homoskedastic. A statistical test for this is the Breusch-Pagan Test.

Under homoskedasticity, the variance of the error term is constant and does not depend on
the values of the regressors:

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2 (constant).

To test this assumption, we perform an auxiliary regression of the squared residuals on the
original regressors:

𝑢̂2
𝑖 = 𝑋𝑋𝑋′

𝑖𝛾𝛾𝛾 + 𝑣𝑖, 𝑖 = 1, … , 𝑛,
where:

• 𝑢̂𝑖 are the OLS residuals from the original model,
• 𝛾𝛾𝛾 are auxiliary coefficients,
• 𝑣𝑖 is the error term in the auxiliary regression.

If homoskedasticity holds, the regressors should not explain any variation in 𝑢̂2
𝑖 , which means

the auxiliary regression should have low explanatory power.

Let 𝑅2
aux be the R-squared from this auxiliary regression. Then, the Breusch–Pagan (BP)

test statistic is:
𝐵𝑃 = 𝑛 ⋅ 𝑅2

aux

Under the null hypothesis of homoskedasticity,

𝐻0 ∶ 𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2,
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the test statistic follows an asymptotic chi-squared distribution with 𝑘−1 degrees of freedom:

𝐵𝑃 𝑑→ 𝜒2
𝑘−1

We reject 𝐻0 at significance level 𝛼 if:

𝐵𝑃 > 𝜒2
1−𝛼, 𝑘−1.

This basic variant of the BP test is Koenker’s version of the test. Other variants include further
nonlinear transformations of the regressors.

In R, the test is implemented via the bptest() function from the AER package. Unfortunately,
the bptest() function does not work directly with feols objects, so we need to estimate the
model first with lm():

fit = lm(wage ~ education + female, data = cps)
bptest(fit)

studentized Breusch-Pagan test

data: fit
BP = 1070.3, df = 2, p-value < 2.2e-16

In the wage regression the BP test clearly rejects 𝐻0, which is strong statistical evidence that
the errors are heteroskedastic.

Let’s apply the test to the CASchools model:

lm(score ~ STR + english, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: lm(score ~ STR + english, data = CASchools)
BP = 29.501, df = 2, p-value = 3.926e-07

lm(score ~ STR + english + lunch, data = CASchools) |> bptest()
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studentized Breusch-Pagan test

data: lm(score ~ STR + english + lunch, data = CASchools)
BP = 9.9375, df = 3, p-value = 0.0191

lm(score ~ STR + english + lunch + expenditure, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: lm(score ~ STR + english + lunch + expenditure, data = CASchools)
BP = 5.9649, df = 4, p-value = 0.2018

In the regression of score on STR and english there is strong statistical evidence that errors
are heteroskedastic, whereas when adding lunch and expenditure there is no evidence of
heteroskedasticity. See the difference in the absolute residuals against fitted values plot:

par(mfrow = c(1,2))
plot(abs(fitB$residuals) ~ fitB$fitted.values)
plot(abs(fitD$residuals) ~ fitD$fitted.values)
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The heteroskedasticity pattern in model (2) likely occurred because of a nonlinear dependence
of the omitted variables lunch and expenditure with the included regressors STR and english.
The inclusion of these variables in model (4) eliminated the heteroskedasticity (apparent het-
eroskedasticity). Therefore, heteroskedasticity is sometimes a sign of model misspecification.
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6.5 Testing for Normality: Jarque–Bera Test

A general property of a normally distributed variable is that it has zero skewness and kurtosis
of three. In the Gaussian regression model, this implies:

𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) ⇒ 𝐸[𝑢3
𝑖 ] = 0, 𝐸[𝑢4

𝑖 ] = 3𝜎4.

The sample skewness and sample kurtosis of the OLS residuals are:

ŝke( ̂𝑢𝑢𝑢) = 1
𝑛𝜎̂3

𝑢̂

𝑛
∑
𝑖=1

𝑢̂3
𝑖 , k̂ur( ̂𝑢𝑢𝑢) = 1

𝑛𝜎̂4
𝑢̂

𝑛
∑
𝑖=1

𝑢̂4
𝑖

A joint test for normality — assessing both skewness and kurtosis — is the Jarque–Bera
(JB) test, with statistic:

𝐽𝐵 = 𝑛 (1
6 ŝke( ̂𝑢𝑢𝑢)2 + 1

24(k̂ur( ̂𝑢𝑢𝑢) − 3)2)

Under the null hypothesis of normal errors, this test statistic is asymptotically chi-squared
distributed:

𝐽𝐵 𝑑→ 𝜒2
2

We reject 𝐻0 at level 𝛼 if:
𝐽𝐵 > 𝜒2

1−𝛼, 2.

In R, we can apply the test using the moments package:

library(moments)
jarque.test(fitD$residuals)

Jarque-Bera Normality Test

data: fitD$residuals
JB = 8.9614, p-value = 0.01133
alternative hypothesis: greater
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Although the Breusch–Pagan test does not reject homoskedasticity for fitD (so classical stan-
dard errors are valid asymptotically), the JB rejects the null hypothesis of normal errors at
the 5% level and provides statistical evidence that the errors are not normally distributed.

This means that exact inference based on t-distributions is not valid in finite samples, and
confidence intervals or t-test results give only large sample approximations.

In econometrics, asymptotic large sample approximations have become the convention because
exact finite sample inference is rarely feasible.

6.6 Joint Hypothesis Testing

So far, we’ve tested whether a single coefficient is zero. But often we want to test multiple
restrictions simultaneously, such as whether a group of variables has a joint effect.

The joint exclusion hypothesis formulates the null hypothesis that a set of coefficients or
linear combinations of coefficients are equal to zero:

𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 000

where:

• 𝑅𝑅𝑅 is a 𝑞 × 𝑘 restriction matrix,
• 000 is the 𝑞 × 1 vector of zeros,
• 𝑞 is the number of restrictions.

Consider for example the score on STR regression with interaction effects:

score𝑖 = 𝛽1 + 𝛽2STR𝑖 + 𝛽3HiEL𝑖 + 𝛽4STR𝑖 ⋅ HiEL𝑖 + 𝑢𝑖.

## Create dummy variable for high proportion of English learners
CASchools$HiEL = (CASchools$english >= 10) |> as.numeric()
fitE = feols(score ~ STR + HiEL + STR:HiEL, data = CASchools, vcov = "hc1")
fitE |> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 682.245837 11.867815 57.487065 < 2.2e-16 ***
STR -0.968460 0.589102 -1.643961 0.10094
HiEL 5.639135 19.514560 0.288971 0.77275
STR:HiEL -1.276613 0.966920 -1.320289 0.18746
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 15.8 Adj. R2: 0.305368

The model output reveals that none of the individual t-tests reject the null hypothesis that
the individual coefficients are zero.

However, these results are misleading because the true marginal effects are a mixture of these
coefficients:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕STR𝑖

= 𝛽2 + 𝛽4 ⋅ HiEL𝑖.

Therefore, to test if STR has an effect on score, we need to test the joint hypothesis:

𝐻0 ∶ 𝛽2 = 0 and 𝛽4 = 0.

In terms of the multiple restriction notation 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 000, we have

𝑅𝑅𝑅 = (0 1 0 0
0 0 0 1) .

Similarly, the marginal effects of HiEL is:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕HiEL𝑖

= 𝛽3 + 𝛽4 ⋅ STR𝑖.

We test the joint hypothesis that 𝛽3 = 0 and 𝛽4 = 0:

𝑅𝑅𝑅 = (0 0 1 0
0 0 0 1) .

Wald Test

The Wald test is based on the Wald distance:

𝑑𝑑𝑑 = 𝑅𝑅𝑅 ̂𝛽𝛽𝛽,

which measures how far the estimated coefficients deviate from the hypothesized restrictions.

The covariance matrix of the Wald distance is: 𝑉 𝑎𝑟(𝑑𝑑𝑑|𝑋𝑋𝑋) = 𝑅𝑅𝑅𝑉 𝑎𝑟( ̂𝛽𝛽𝛽|𝑋𝑋𝑋)𝑅𝑅𝑅′, which can be
estimated as:

𝑉 𝑎𝑟(𝑑𝑑𝑑 ∣ 𝑋𝑋𝑋) = 𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′.
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The Wald statistic is the squared, variance-standardized distance:

𝑊 = 𝑑𝑑𝑑′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1𝑑𝑑𝑑,

where 𝑉𝑉𝑉 is a consistent estimator of the covariance matrix of ̂𝛽𝛽𝛽 (e.g., HC1 robust: 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑐1).

Under the null hypothesis, and assuming (A1)–(A4), the Wald statistic has an asymptotic
chi-squared distribution:

𝑊 𝑑→ 𝜒2
𝑞,

where 𝑞 is the number of restrictions.

The null is rejected if 𝑊 > 𝜒2
1−𝛼,𝑞.

F-test

The Wald test is an asymptotic size-𝛼-test under (A1)–(A4). Even if normality and ho-
moskedasticity hold true as well, the Wald test is still only asymptotically valid, i.e.:

lim
𝑛→∞

𝑃(Wald test rejects 𝐻0|𝐻0 true) = 𝛼.

The F-test is the small sample correction of the Wald test. It is based on the same distance
as the Wald test, but it is scaled by the number of restrictions 𝑞:

𝐹 = 𝑊
𝑞 = 1

𝑞 (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).

Under the restrictive assumption that the Gaussian regression model holds, and if 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚
is used, it can be shown that

𝐹 ∼ 𝐹𝑞;𝑛−𝑘

for any finite sample size 𝑛. Here, 𝐹𝑞;𝑛−𝑘 is the F-distribution with 𝑞 degrees of freedom in
the numerator and 𝑛 − 𝑘 degrees of freedom in the denominator.

The test decision for the F-test:

do not reject 𝐻0 if 𝐹 ≤ 𝐹(1−𝛼,𝑞,𝑛−𝑘),
reject 𝐻0 if 𝐹 > 𝐹(1−𝛼,𝑞,𝑛−𝑘),

where 𝐹(𝑝,𝑚1,𝑚2) is the 𝑝-quantile of the F distribution with 𝑚1 degrees of freedom in the
numerator and 𝑚2 degrees of freedom in the denominator.
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F- and Chi-squared distribution

Similar to how the t-distribution 𝑡𝑛−𝑘 approaches the standard normal as sample size
increases, we have 𝑞 ⋅ 𝐹𝑞;𝑛−𝑘 → 𝜒2

𝑞 as 𝑛 → ∞. Therefore, the F-test and Wald test
become asymptotically equivalent and lead to identical statistical conclusions in large
samples. For single constraint (q=1) hypotheses of the form 𝐻0 ∶ 𝛽𝑗 = 0, the F-test is
equivalent to a two-sided t-test.
The F-test can be viewed as a finite-sample correction of the Wald test. It tends to be
more conservative than the Wald test in small samples, meaning that rejection by the
F-test generally implies rejection by the Wald test, but not necessarily vice versa. Due
to this more conservative nature, which helps control false rejections (Type I errors) in
small samples, the F-test is often preferred in practice.

F-tests in R

The function wald() from the fixest package performs an F-test:

wald(fitE, keep = "STR")

Wald test, H0: joint nullity of STR and STR:HiEL
stat = 5.6381, p-value = 0.003837, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

wald(fitE, keep = "HiEL")

Wald test, H0: joint nullity of HiEL and STR:HiEL
stat = 89.9, p-value < 2.2e-16, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

The hypotheses that STR and HiEL have no effect on score can be clearly rejected.

Another research question is whether the effect of STR on score is zero only for the subgroup
of schools with a high proportion of English learners (HiEL = 1). In this case, the marginal
effect is:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖,HiEL𝑖 = 1]
𝜕STR𝑖

= 𝛽2 + 𝛽4 ⋅ 1,

and the null hypothesis is:
𝐻0 ∶ 𝛽2 + 𝛽4 = 0.
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The corresponding restriction matrix is:

𝑅𝑅𝑅 = (0 1 0 1) ,

where the number of restrictions is 𝑞 = 1.
The function linearHypothesis() from the AER package is more flexible for these cases:

## Define hypothesis matrix:
R = matrix(c(0,1,0,1), ncol = 4)
linearHypothesis(fitE, hypothesis.matrix = R, test = "F", vcov. = vcovHC(fitE, type = "HC1"))

Linear hypothesis test:
STR + STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + STR:HiEL

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 417
2 416 1 8.5736 0.003598 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Similarly, this hypothesis can be rejected at the 0.01 level.

6.7 Jackknife Methods

Projection Matrix

Recall the vector of fitted values 𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽. Inserting the model equation gives:

𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′⏟⏟⏟⏟⏟⏟⏟
=𝑃𝑃𝑃

𝑌𝑌𝑌 = 𝑃𝑃𝑃𝑌𝑌𝑌 .

The projection matrix 𝑃𝑃𝑃 is also known as the influence matrix or hat matrix and maps
observed values to fitted values.
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Leverage Values

The diagonal entries of 𝑃𝑃𝑃 , given by

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖,

are called leverage values or hat values and measure how far away the regressor values of
the 𝑖-th observation 𝑋𝑖 are from those of the other observations.

Properties of leverage values:

0 ≤ ℎ𝑖𝑖 ≤ 1,
𝑛

∑
𝑖=1

ℎ𝑖𝑖 = 𝑘.

Leverage values ℎ𝑖𝑖 indicate how much influence an observation 𝑋𝑋𝑋𝑖 has on the regression fit,
e.g., the last observation in the following artificial dataset:

X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)
plot(X,Y, main="OLS regression line with and without last observation")
abline(lm(Y~X), col="blue")
abline(lm(Y[1:7]~X[1:7]), col="red")
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OLS regression line with and without last observation

X

Y

hatvalues(lm(Y~X))

1 2 3 4 5 6 7 8
0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.9869646
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A low leverage implies the presence of many regressor observations similar to 𝑋𝑋𝑋𝑖 in the sample,
while a high leverage indicates a lack of similar observations near 𝑋𝑋𝑋𝑖.

An observation with a high leverage ℎ𝑖𝑖 but a response value 𝑌𝑖 that is close to the true regres-
sion line 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 (indicating a small error 𝑢𝑖) is considered a good leverage point. Despite being
unusual in the regressor space, this point improves estimation precision because it provides
valuable information about the regression relationship in regions where data is sparse.

Conversely, a bad leverage point occurs when both ℎ𝑖𝑖 and the error 𝑢𝑖 are large, indicating
both unusual regressor and response values. This can misleadingly impact the regression fit.

The actual error term is unknown, but standardized residuals can be used to differentiate
between good and bad leverage points.

Standardized Residuals

Many regression diagnostic tools rely on the residuals of the OLS estimation 𝑢̂𝑖 because they
provide insight into the properties of the unknown error terms 𝑢𝑖.

Under the homoskedastic linear regression model (A1)–(A5), the errors are independent and
have the property

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋) = 𝜎2.
Since 𝑃𝑃𝑃𝑋𝑋𝑋 = 𝑋𝑋𝑋 and, therefore,

̂𝑢𝑢𝑢 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢) = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑢𝑢𝑢,
the residuals have a different property:

𝑉 𝑎𝑟( ̂𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋) = 𝜎2(𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃).
The 𝑖-th residual satisfies

𝑉 𝑎𝑟(𝑢̂𝑖 ∣ 𝑋𝑋𝑋) = 𝜎2(1 − ℎ𝑖𝑖),
where ℎ𝑖𝑖 is the 𝑖-th leverage value.

Under the assumption of homoskedasticity, the variance of 𝑢̂𝑖 depends on 𝑋𝑋𝑋, while the variance
of 𝑢𝑖 does not. Dividing by √1 − ℎ𝑖𝑖 removes the dependency:

𝑉 𝑎𝑟( 𝑢̂𝑖
√1 − ℎ𝑖𝑖

∣ 𝑋𝑋𝑋) = 𝜎2

The standardized residuals are defined as follows:

𝑟𝑖 ∶= 𝑢̂𝑖

√𝑠2
𝑢̂(1 − ℎ𝑖𝑖)

.

Standardized residuals are available using the R command rstandard().
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Residuals vs. Leverage Plot

Plotting standardized residuals against leverage values provides a graphical tool for detecting
outliers. High leverage points have a strong influence on the regression fit. High leverage values
with standardized residuals close to 0 are good leverage points, and high leverage values with
large standardized residuals are bad leverage points.

fit = lm(score ~ STR + english + lunch, data = CASchools)
plot(fit, which = 5)
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The plot indicates that some observations have a higher leverage value than others, but none
of these have a large standardized residual, so they are not bad leverage points.

Here is an example with two high leverage points. Observation 𝑖 = 200 is a good leverage
point and 𝑖 = 199 is a bad leverage point:

## simulate regressors and errors
X = rnorm(250)
u = rnorm(250)
## set some unusual observations manually
X[199] = 6
X[200] = 6
u[199] = 5
u[200] = 0
## define dependent variable
Y = X + u
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## residuals vs leverage plot
plot(lm(Y ~ X), which = 5)
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The plot also shows Cook’s distance thresholds. Cook’s distance for observation 𝑖 is defined
as

𝐷𝑖 =
( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)′𝑋𝑋𝑋′𝑋𝑋𝑋( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)

𝑘𝑠2
𝑢̂

,

where
̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖

𝑢̂𝑖
1 − ℎ𝑖𝑖

.

Here, ̂𝛽𝛽𝛽(−𝑖) is the 𝑖-th leave-one-out estimator (the OLS estimator when the 𝑖-th observation
is left out).

This principle is called Jackknife because it is similar to the way a jackknife is used to
cut something. The idea is to “cut” the data by removing one observation at a time and
then re-estimating the model. The impact of cutting the 𝑖-th observation is proportional to
𝑢̂𝑖/(1 − ℎ𝑖𝑖).
We should pay special attention to points outside Cook’s distance thresholds of 0.5 and 1 and
check for measurement errors or other anomalies.
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Jackknife Standard Errors

Recall the heteroskedasticity-robust White estimator for the meat matrix ΩΩΩ = 𝐸[𝑢2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] in
the sandwich formula tor the OLS variance:

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖.

If there are leverage points in the data, their presence might have a large influence on the
estimation of ΩΩΩ.

An alternative way of estimating the covariance matrix is to weight the observations by the
leverage values:

Ω̂ΩΩjack = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖.

Observations with high leverage values have a small denominator (1 − ℎ𝑖𝑖)2 and are therefore
downweighted, which makes this estimator more robust to the influence of leverage points.

The full jackknife covariance matrix estimator is conventionally labeled as the HC3 estima-
tor:

𝑉𝑉𝑉 jack = 𝑉𝑉𝑉 hc3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 Ω̂ΩΩjack (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 .
There is also the HC2 estimator, which uses 𝑢̂2

𝑖 (1 − ℎ𝑖𝑖) instead of 𝑢̂2
𝑖 /(1 − ℎ𝑖𝑖)2, but this is

less common.

The HC3 standard errors are:

𝑠𝑒ℎ𝑐3( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐3]𝑗𝑗.

If you have a small sample size and you are worried about influential observations, you should
use the HC3 standard errors instead of the HC1 standard errors.

To display the HC3 standard errors in the regression table, you can use modelsummary(fit,
vcov = "HC3").

6.8 Cluster-robust Inference

Recall that in many economic applications, observations are naturally clustered. For instance,
students within the same school, workers in the same firm, or households in the same village
may share common unobserved factors that induce correlation in their outcomes.
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As discussed in Section 5, for clustered observations we can use the notation (𝑋𝑋𝑋𝑖𝑔, 𝑌𝑖𝑔), where
the linear regression equation is:

𝑌𝑖𝑔 = 𝑋𝑋𝑋′
𝑖𝑔𝛽𝛽𝛽 + 𝑢𝑖𝑔, 𝑖 = 1, … , 𝑛𝑔, 𝑔 = 1, … , 𝐺.

Under independence across clusters but allowing for arbitrary correlation within clusters, the
OLS estimator remains unbiased, but its standard variance formula is no longer valid. As we
saw in Section 5, the conditional variance

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

satisfies

𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 =
𝐺

∑
𝑔=1

𝐸[(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)
′
∣𝑋𝑋𝑋].

Cluster-robust Standard Errors

When observations within clusters are correlated, using ordinary standard errors (even
heteroskedasticity-robust ones) will typically underestimate the true sampling variability of
the OLS estimator.

To account for within-cluster correlation, we use cluster-robust standard errors. The key
insight is to estimate the middle part of the sandwich formula above by allowing for arbitrary
within-cluster correlation, while maintaining the independence assumption across clusters.

The cluster-robust variance estimator is:

𝑉𝑉𝑉 𝐶𝑅0 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝐺

∑
𝑔=1

(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢̂𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢̂𝑖𝑔)
′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

This estimator, also known as the clustered sandwich estimator, allows for arbitrary cor-
relation of errors within clusters, including both heteroskedasticity and serial correlation. Like
the HC estimators, it is consistent under large-sample asymptotics.

Finite Sample Correction

Similar to the HC1 correction for heteroskedasticity, a small-sample correction for the cluster-
robust estimator is commonly applied:

𝑉𝑉𝑉 𝐶𝑅1 = 𝐺
𝐺 − 1 ⋅ 𝑛 − 1

𝑛 − 𝑘 ⋅ 𝑉𝑉𝑉 𝐶𝑅0,

where 𝐺 is the number of clusters, 𝑛 is the total sample size, and 𝑘 is the number of regressors.

The corresponding cluster-robust standard errors are:

𝑠𝑒𝐶𝑅1( ̂𝛽𝑗) = √[𝑉𝑉𝑉 𝐶𝑅1]𝑗𝑗.
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When to Cluster

You should use cluster-robust standard errors when:

1. There’s a clear grouping structure in your data (schools, villages, firms, etc.)
2. You expect errors to be correlated within these groups
3. You have a sufficient number of clusters (generally at least 30-50)

Common examples include: - Student-level data clustered by school or classroom - Firm-level
data clustered by industry - Individual-level data clustered by geographic region - Panel data
clustered by individual or time period

Implementation in R

The CASchools dataset contains information on 420 California Schools from 45 different coun-
ties, which can be viewed as clusters.

The fixest package makes it easy to implement cluster-robust standard errors:

feols(score ~ STR + english, data = CASchools, cluster = "county") |> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Clustered (county)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.032245 15.802838 43.41196 < 2.2e-16 ***
STR -1.101296 0.754387 -1.45986 0.15143
english -0.649777 0.030230 -21.49427 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 14.4 Adj. R2: 0.423681

After accounting for clustering, the coefficient on STR is no longer statistically significant.

You can also use the modelsummary() function to compare the same regression with different
standard errors:

fit1 = feols(score ~ STR + english, data = CASchools)
## List of standard errors:
myvcov = list("IID", "HC1", "HC3", ~county)
modelsummary(fit1, stars = TRUE, statistic = "conf.int", vcov = myvcov)
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(1) (2) (3) (4)
(Intercept) 686.032*** 686.032*** 686.032*** 686.032***

[671.464, 700.600] [668.875, 703.189] [668.710, 703.354] [654.969, 717.095]
STR −1.101** −1.101* −1.101* −1.101

[−1.849, −0.354] [−1.952, −0.250] [−1.960, −0.242] [−2.584, 0.382]
english −0.650*** −0.650*** −0.650*** −0.650***

[−0.727, −0.572] [−0.711, −0.589] [−0.711, −0.588] [−0.709, −0.590]
Num.Obs. 420 420 420 420
R2 0.426 0.426 0.426 0.426
R2 Adj. 0.424 0.424 0.424 0.424
AIC 3439.1 3439.1 3439.1 3439.1
BIC 3451.2 3451.2 3451.2 3451.2
RMSE 14.41 14.41 14.41 14.41
Std.Errors IID HC1 HC3 by: county

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Challenges with Cluster-robust Inference

The cluster-robust variance estimator relies on having a large number of clusters. With few
clusters (generally 𝐺 < 30), the estimator may be biased downward, leading to confidence
intervals that are too narrow and overly frequent rejection of null hypotheses.

To account for high leverage points, the CR3 correction is similar to HC3 and applies a leverage
adjustment at the cluster level:

𝑉𝑉𝑉 𝐶𝑅3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝐺

∑
𝑔=1

(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔
𝑢̂𝑖𝑔

1 − ℎ𝑖𝑔
)(

𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔
𝑢̂𝑖𝑔

1 − ℎ𝑖𝑔
)

′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

6.9 R-codes

metrics-sec06.R
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Part III

Panel Data Methods
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