
7 Fixed Effects

library(fixest)
library(modelsummary)
library(AER)

7.1 Panel Data

In panel data, we observe multiple individuals or entities over multiple time periods. Each
observation is indexed by both individual 𝑖 = 1, … , 𝑛 and time period 𝑡 = 1, … , 𝑇 . We denote
a variable 𝑌 for individual 𝑖 at time period 𝑡 as 𝑌𝑖𝑡.

Unlike cross-sectional data (which observes multiple individuals at a single point) or time series
data (which tracks a single individual over time), panel data combines both dimensions.

Economic applications include:

• Growth: GDP and productivity across countries over time
• Corporate finance: Firm investment and capital structure dynamics
• Labor economics: Individual wage trajectories and employment patterns
• International trade: Bilateral trade flows between country pairs over years

In the case of multiple regressor variables, we denote the 𝑗-th regressor for individual 𝑖 at time
period 𝑡 as 𝑋𝑗,𝑖𝑡, where 𝑗 = 1, … , 𝑘.
If each individual has observations for all time periods, we call this a balanced panel. The
total number of observations is 𝑛𝑇 .

In typical economic panel datasets, we often have 𝑛 > 𝑇 (more individuals than time points)
or 𝑛 ≈ 𝑇 (roughly the same number of individuals as time points).

When some observations are missing for at least one individual or time period, we have an
unbalanced panel.
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7.2 Pooled Regression

Model Setup

The simplest approach to panel data is the pooled regression, which treats all observations
as if they came from a single cross-section.

Consider a panel dataset with dependent variable 𝑌𝑖𝑡 and 𝑘 independent variables
𝑋1,𝑖𝑡, … , 𝑋𝑘,𝑖𝑡 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

The first regressor variable represents an intercept (i.e., 𝑋1,𝑖𝑡 = 1). We stack the regressor
variables into the 𝑘 × 1 vector:

𝑋𝑋𝑋𝑖𝑡 =
⎛⎜⎜⎜⎜
⎝

1
𝑋2,𝑖𝑡

⋮
𝑋𝑘,𝑖𝑡

⎞⎟⎟⎟⎟
⎠

.

Pooled Panel Regression Model

The pooled linear panel regression model equation for individual 𝑖 = 1, … , 𝑛 and time 𝑡 =
1, … , 𝑇 is:

𝑌𝑖𝑡 = 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡,

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖𝑡 is the error
term for individual 𝑖 at time 𝑡.
It is not reasonable to assume that 𝑌𝑖𝑡 and 𝑌𝑗𝑡 are independent. Therefore, the random
sampling assumption (A2) needs to be adapted to the cluster level. Instead of (A2), we
assume that

(𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 )
are i.i.d. draws from their joint population distribution for 𝑖 = 1, … , 𝑛.
This implies that observations across different individuals are independent. However, observa-
tions within an individual across time points may be dependent.

Therefore, to conduct inference about the population, we require 𝑛 to be large, while 𝑇 can
be small or large.

Furthermore, while 𝑋𝑋𝑋𝑖𝑠 and 𝑋𝑋𝑋𝑖𝑡 can now be correlated, we require that the regressors are
strictly exogenous, meaning 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋] = 0. Therefore, assumption (A1) must be replaced
by:

𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 ] = 0.
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Pooled OLS

The pooled OLS estimator is:

̂𝛽𝛽𝛽pool = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑌𝑖𝑡).

This can be written in matrix notation, where we define the pooled regressor matrix 𝑋𝑋𝑋 of
order 𝑛𝑇 × 𝑘 and the dependent variable vector 𝑌𝑌𝑌 of order 𝑛𝑇 × 1:

̂𝛽𝛽𝛽pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

Pooled OLS is unbiased and consistent under the following assumptions:

Pooled OLS Assumptions

• (A1-pool) 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 ] = 0

• (A2-pool) {(𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 )}𝑛
𝑖=1 is an i.i.d. sample

• (A3-pool) 𝑘𝑢𝑟(𝑌𝑖𝑡) < ∞ and 𝑘𝑢𝑟(𝑋𝑗,𝑖𝑡) < ∞
• (A4-pool) ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′

𝑖𝑡 is invertible

Under these assumptions, the asymptotic distribution of the pooled OLS estimator is:

√𝑛( ̂𝛽𝛽𝛽pool − 𝛽𝛽𝛽) 𝑑−→ 𝑁(0,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1), as 𝑛 → ∞,

where 𝑄𝑄𝑄 = 𝐸( 1
𝑇 ∑𝑇

𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡) and ΩΩΩ = 𝐸(( 1

𝑇 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)( 1

𝑇 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)′).

To illustrate, consider the Grunfeld dataset, which provides investment, capital stock, and
firm value data for 10 firms over 20 years:

data(Grunfeld, package = "AER")
head(Grunfeld)

invest value capital firm year
1 317.6 3078.5 2.8 General Motors 1935
2 391.8 4661.7 52.6 General Motors 1936
3 410.6 5387.1 156.9 General Motors 1937
4 257.7 2792.2 209.2 General Motors 1938
5 330.8 4313.2 203.4 General Motors 1939
6 461.2 4643.9 207.2 General Motors 1940
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fit_pool = lm(invest ~ capital, data = Grunfeld)
fit_pool

Call:
lm(formula = invest ~ capital, data = Grunfeld)

Coefficients:
(Intercept) capital

8.5651 0.4852

Cluster-Robust Inference

Let’s visualize the data:

plot(invest ~ capital, col = as.factor(firm), data = Grunfeld)
legend("bottomright", legend = unique(Grunfeld$firm), col = 1:10, pch = 1,

title = "Firm", cex = 0.8)
abline(fit_pool, col = "red")
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The observations appear in clusters, with each firm forming a cluster. This suggests potential
problems with the pooled approach if we use classical standard errors.

The error covariance matrix for panel data has a block-diagonal structure:

𝐷𝐷𝐷 = Var[𝑢𝑢𝑢|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝐷𝐷𝐷1 000 … 000
000 𝐷𝐷𝐷2 … 000
⋮ ⋮ ⋱ ⋮
000 000 … 𝐷𝐷𝐷𝑛

⎞⎟⎟⎟⎟
⎠

where 𝐷𝐷𝐷𝑖 is the 𝑇 × 𝑇 covariance matrix for individual 𝑖:

𝐷𝐷𝐷𝑖 =
⎛⎜⎜⎜⎜
⎝

𝐸[𝑢2
𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,1𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,1𝑢𝑖,𝑇 |𝑋𝑋𝑋]

𝐸[𝑢𝑖,2𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢2
𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,2𝑢𝑖,𝑇 |𝑋𝑋𝑋]

⋮ ⋮ ⋱ ⋮
𝐸[𝑢𝑖,𝑇 𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,𝑇 𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢2

𝑖,𝑇 |𝑋𝑋𝑋]

⎞⎟⎟⎟⎟
⎠

The variance of the pooled OLS estimator is:

Var[ ̂𝛽𝛽𝛽pool|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

The cluster-robust covariance matrix estimator is:

𝑉𝑉𝑉 pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑛

∑
𝑖=1

(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢̂𝑖𝑡)(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢̂𝑖𝑡)
′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

We can implement this using the fixest package:

# Pooled regression with fixest
fit_pool_fe = feols(invest ~ capital, data = Grunfeld)

# Incorrect Classical Standard Errors
summary(fit_pool_fe)

OLS estimation, Dep. Var.: invest
Observations: 220
Standard-errors: IID

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.565056 13.967368 0.613219 0.54037
capital 0.485191 0.035861 13.529645 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 154.9 Adj. R2: 0.453935

128



# Cluster-robust standard errors (clustered by firm)
summary(fit_pool_fe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.565056 25.729726 0.332886 0.7460942
capital 0.485191 0.132374 3.665310 0.0043507 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 154.9 Adj. R2: 0.453935

7.3 Time-invariant Regressors

Consider a simple panel regression model:

𝑌𝑖𝑡 = 𝛽1 + 𝛽2𝑋𝑖𝑡 + 𝛽3𝑍𝑖 + 𝑢𝑖𝑡 (7.1)

Here, 𝑍𝑖 represents a time-invariant variable specific to individual 𝑖 (e.g., gender, ethnicity,
birthplace).

With the usual exogeneity condition 𝐸[𝑢𝑖𝑡|𝑋𝑖𝑡, 𝑍𝑖], the coefficient 𝛽2 can be interpreted as the
marginal effect of 𝑋𝑖𝑡 on 𝑌𝑖𝑡, holding 𝑍𝑖 constant.

The key advantage of panel data is that we can control for a time-invariant variable 𝑍𝑖 even
if it is unobserved.

To see this, consider data from just two time periods, 𝑡 = 1 and 𝑡 = 2. Taking the difference
between time periods:

𝑌𝑖2 − 𝑌𝑖1 = (𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑍𝑖 + 𝑢𝑖2) − (𝛽1 + 𝛽2𝑋𝑖1 + 𝛽3𝑍𝑖 + 𝑢𝑖1)
= 𝛽2(𝑋𝑖2 − 𝑋𝑖1) + (𝑢𝑖2 − 𝑢𝑖1)

This first-differencing transformation eliminates both the intercept 𝛽1 and the effect of the
time-invariant variable 𝛽3𝑍𝑖.

The coefficient 𝛽2 is simply the regression coefficient from the first-differenced model:

Δ𝑌𝑖 = 𝛽2Δ𝑋𝑖 + Δ𝑢𝑖,

where Δ𝑌𝑖 = 𝑌𝑖2 − 𝑌𝑖1, Δ𝑋𝑖 = 𝑋𝑖2 − 𝑋𝑖1, and Δ𝑢𝑖 = 𝑢𝑖2 − 𝑢𝑖1.
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Therefore, 𝛽2 can be estimated from a regression of Δ𝑌𝑖 on Δ𝑋𝑖 without intercept. We do
not need to observe 𝑍𝑖 to estimate 𝛽2 from model Equation 7.1.

We can combine the terms 𝛽1 and 𝛽3𝑍𝑖 into a single individual fixed effect 𝛼𝑖 = 𝛽1 + 𝛽3𝑍𝑖.
This term represents all unobserved, time-constant factors that affect the dependent variable.

7.4 The Fixed Effects Model

Let’s formalize the fixed effects model. Consider a panel dataset with dependent variable
𝑌𝑖𝑡, a vector of 𝑘 independent variables 𝑋𝑋𝑋𝑖𝑡, and an unobserved individual fixed effect 𝛼𝑖 for
𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

Fixed Effects Regression Model

The fixed effects regression model for individual 𝑖 = 1, … , 𝑛 and time 𝑡 = 1, … , 𝑇 is:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡 (7.2)

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients, 𝛼𝑖 is the individual fixed
effect, and 𝑢𝑖𝑡 is the error term.

Identification Assumptions

To identify 𝛽𝑗 as the ceteris paribus marginal effect of 𝑋𝑗,𝑖𝑡 on 𝑌𝑖𝑡, holding constant the fixed
effect 𝛼𝑖 and the other regressors, we need to make some assumptions.

1. Strict exogeneity conditional on fixed effects: 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 , 𝛼𝑖] = 0 for all
𝑡. This means that the error 𝑢𝑖𝑡 is uncorrelated with the regressors in all time periods,
conditional on the fixed effect.

2. Time-varying regressors: There must be variation in 𝑋𝑋𝑋𝑗,𝑖𝑡 over time within each
individual. Time-invariant regressors are absorbed by the fixed effect 𝛼𝑖 and cannot be
separately identified.

If strict exogeneity is violated (e.g., due to feedback effects where 𝑌𝑖𝑡 affects future values of
𝑋𝑋𝑋𝑖𝑠 for 𝑠 > 𝑡), then the fixed effects estimator will be inconsistent. In this case, dynamic panel
data models may be appropriate.
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First-Differencing Estimator

As shown earlier, we can eliminate the fixed effects by taking first differences. Using Δ𝑌𝑖𝑡 =
𝑌𝑖𝑡 − 𝑌𝑖,𝑡−1 as the dependent variable and inserting model Equation 7.2, we get:

Δ𝑌𝑖𝑡 = (Δ𝑋𝑋𝑋𝑖𝑡)′𝛽𝛽𝛽 + Δ𝑢𝑖𝑡 (7.3)

where Δ𝑋𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖,𝑡−1 and Δ𝑢𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1.

We can then apply OLS to this transformed model:

# Create first differences manually for demonstration
diffcapital = c(aggregate(Grunfeld$capital, by = list(Grunfeld$firm), FUN = diff)$x)
diffinvest = c(aggregate(Grunfeld$inv, by = list(Grunfeld$firm), FUN = diff)$x)

# First-difference regression
lm(diffinvest ~ diffcapital - 1)

Call:
lm(formula = diffinvest ~ diffcapital - 1)

Coefficients:
diffcapital

0.2307

A problem with this differenced estimator is that the transformed error term Δ𝑢𝑖𝑡 defines an
artificial correlation structure, which makes the estimator non-optimal. Δ𝑢𝑖,𝑡+1 = 𝑢𝑖,𝑡+1 − 𝑢𝑖,𝑡
is correlated with Δ𝑢𝑖,𝑡 = 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1 through 𝑢𝑖,𝑡.

Within Estimator

An efficient estimator can be obtained by a different transformation. The idea is to consider
the individual specific means

𝑌 𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑌𝑖𝑡, 𝑋𝑋𝑋𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡, 𝑢𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑢𝑖𝑡

Taking the means over 𝑡 of both sides of Equation 7.2 implies

𝑌 𝑖⋅ = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅. (7.4)
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Then, we subtract these means from the original equation:

𝑌𝑖𝑡 − 𝑌 𝑖⋅ = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢𝑖⋅)

The fixed effect 𝛼𝑖 drops out.

The deviations from the individual specific means are called within transformations:

̇𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅, 𝑋̇𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅, 𝑢̇𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅

The within-transfromed model equation is

̇𝑌𝑖𝑡 = 𝑋̇𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢̇𝑖𝑡 (7.5)

The within estimator (also called the fixed effects estimator) is:

̂𝛽𝛽𝛽fe = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡 ̇𝑌𝑖𝑡)

# Fixed effects estimation using fixest
fit_fe = feols(invest ~ capital, fixef = "firm", data = Grunfeld)
fit_fe$coefficients

capital
0.3707023

Fixed Effects Regression Assumptions

• (A1-fe) 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 , 𝛼𝑖] = 0.
• (A2-fe) (𝛼𝑖, 𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′

𝑖1, … ,𝑋𝑋𝑋′
𝑖𝑇 )𝑛

𝑖=1 is an i.i.d. sample.

• (A3-fe) 𝑘𝑢𝑟(𝑌𝑖𝑡) < ∞, 𝑘𝑢𝑟(𝑢𝑖𝑡) < ∞.

• (A4-fe) ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡 is invertible.

(A1-fe) is the same as (A1-pool), but now we condition on the unobserved fixed effect 𝛼𝑖.

(A2-fe) is a standard random sampling assumption indicating that individuals 𝑖 = 1, … , 𝑛 are
randomly sampled.

(A3-fe) ensures finite fourth moments, which is a requirement for asymptotic normality of the
estimator.

(A4-fe) is satisfied if there is no perfect multicollinearity and if no regressor is constant over
time for any individual.
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Under (A2-fe), the collection of the within-transformed variables of individual 𝑖,

( ̇𝑌𝑖1, … , ̇𝑌𝑖𝑇 , 𝑋̇𝑋𝑋𝑖1, … ,𝑋̇𝑋𝑋𝑖𝑇 , 𝑢̇𝑖1, … , 𝑢̇𝑖𝑇 ),

forms an i.i.d. sequence for 𝑖 = 1, … , 𝑛.
The within-transformed variables satisfy (A1-pool)–(A4-pool), which mean that its asymptotic
distribution is: √𝑛( ̂𝛽𝛽𝛽fe − 𝛽𝛽𝛽) 𝑑−→ 𝑁(0,𝑊𝑊𝑊 −1ΨΨΨ𝑊𝑊𝑊 −1), as 𝑛 → ∞,

where 𝑊𝑊𝑊 = 𝐸( 1
𝑇 ∑𝑇

𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡) and ΨΨΨ = 𝐸(( 1

𝑇 ∑𝑇
𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑢̇𝑖𝑡)( 1

𝑇 ∑𝑇
𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑢̇𝑖𝑡)′).

Hence, we can apply the cluster-robust covariance matrix estimator of the pooled regression
to the within-transformed variables:

# Inference with cluster-robust standard errors
summary(fit_fe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.370702 0.064785 5.72203 0.0001924 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 58.9 Adj. R2: 0.91717

Within R2: 0.659603

Dummy Variable Approach

An equivalent way to estimate the fixed effects model is to include a dummy variable for
each individual. This approach is known as the least squares dummy variable (LSDV)
estimator:

# Equivalent to fit_fe
fit_fe_lsdv = lm(invest ~ capital + factor(firm) - 1, data = Grunfeld)
fit_fe_lsdv$coefficients

capital factor(firm)General Motors
0.3707023 367.6436372

factor(firm)US Steel factor(firm)General Electric
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301.1715657 -46.0502428
factor(firm)Chrysler factor(firm)Atlantic Refining

41.1776965 -118.6424177
factor(firm)IBM factor(firm)Union Oil

16.7523079 -69.1553441
factor(firm)Westinghouse factor(firm)Goodyear

11.1445528 -68.5432229
factor(firm)Diamond Match factor(firm)American Steel

0.8819721 -18.3676804

The coefficient on the regressor capital is the same as in the within estimator. However, the
LSDV approach becomes computationally intensive with many individuals, and the standard
errors need to be adjusted for clustering.

7.5 Time Fixed Effects

While individual fixed effects control for unobserved heterogeneity across individuals, we might
also want to control for factors that vary over time but are constant across individuals (e.g.,
macroeconomic conditions, policy changes).

The time fixed effects model is:

𝑌𝑖𝑡 = 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡 (7.6)

where 𝜆𝑡 captures time-specific effects. Similar to individual fixed effects, we can rewrite this
model by demeaning across time:

𝑌𝑖𝑡 − 𝑌 ⋅𝑡 = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢⋅𝑡)

where the time-specific means are:

𝑌 ⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖𝑡, 𝑋𝑋𝑋⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑡, 𝑢⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑢𝑖𝑡.

Hence, we regress 𝑌𝑖𝑡 − 𝑌 ⋅𝑡 on 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡 to estimate 𝛽𝛽𝛽 in Equation 7.6.

# Time fixed effects
fit_timefe = feols(invest ~ capital, fixef = "year", data = Grunfeld)
summary(fit_timefe, cluster = "firm")
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OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.539676 0.163321 3.30438 0.0079544 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 151.1 Adj. R2: 0.430515

Within R2: 0.450115

7.6 Two-way Fixed Effects

We can combine both individual and time fixed effects in a two-way fixed effects model:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡 (7.7)

This model controls for both individual-specific and time-specific unobserved factors. To esti-
mate it, we apply a two-way transformation that subtracts individual means, time means, and
adds back the overall mean:

̈𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅ − 𝑌 ⋅𝑡 + 𝑌
𝑋̈𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅ − 𝑋𝑋𝑋⋅𝑡 + 𝑋𝑋𝑋

To see why this is useful, consider the following transformations applied to the left-hand side
of Equation 7.7:

• Individual specific mean:
𝑌 𝑖⋅ = 𝛼𝑖 + 𝜆 + 𝑋𝑋𝑋′

𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅,
where 𝜆 = 1

𝑇 ∑𝑇
𝑡=1 𝜆𝑡.

• Time specific mean:
𝑌 ⋅𝑡 = 𝛼 + 𝜆𝑡 + 𝑋𝑋𝑋′

⋅𝑡𝛽𝛽𝛽 + 𝑢⋅𝑡,
where 𝛼 = 1

𝑛 ∑𝑛
𝑖=1 𝛼𝑖.

• Total mean:

𝑌 = 1
𝑛𝑇

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑌𝑖𝑡 = 𝛼 + 𝜆 + 𝑋𝑋𝑋′𝛽𝛽𝛽 + 𝑢,

where 𝑋𝑋𝑋 = 1
𝑛𝑇 ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡 and 𝑢 = 1

𝑛𝑇 ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑢𝑖𝑡.

135



The transformed model is:
̈𝑌𝑖𝑡 = 𝑋̈𝑋𝑋′

𝑖𝑡𝛽𝛽𝛽 + 𝑢̈𝑖𝑡 (7.8)

where 𝑢̈𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅ − 𝑢⋅𝑡 + 𝑢.
Hence, we estimate 𝛽𝛽𝛽 by regressing ̈𝑌𝑖𝑡 on 𝑋̈𝑋𝑋𝑖𝑡.

# Two-way fixed effects
fit_2wayfe = feols(invest ~ capital, fixef = c("firm", "year"), data = Grunfeld)
summary(fit_2wayfe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11, year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.40875 0.062522 6.53767 6.5744e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 54.7 Adj. R2: 0.921459

Within R2: 0.60632

For inference, we use cluster-robust standard errors:

# Cluster-robust standard errors
summary(fit_2wayfe, cluster = "firm")

OLS estimation, Dep. Var.: invest
Observations: 220
Fixed-effects: firm: 11, year: 20
Standard-errors: Clustered (firm)

Estimate Std. Error t value Pr(>|t|)
capital 0.40875 0.062522 6.53767 6.5744e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 54.7 Adj. R2: 0.921459

Within R2: 0.60632
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OLS-IID OLS-CL FE Time FE Two-way FE
(Intercept) 8.565 8.565

(13.967) (25.730)
capital 0.485*** 0.485** 0.371*** 0.540** 0.409***

(0.036) (0.132) (0.065) (0.163) (0.063)
Num.Obs. 220 220 220 220 220
R2 0.456 0.456 0.921 0.483 0.932
R2 Adj. 0.454 0.454 0.917 0.431 0.921
R2 Within 0.660 0.450 0.606
R2 Within Adj. 0.658 0.447 0.604
AIC 2847.2 2847.2 2441.9 2874.4 2447.2
BIC 2854.0 2854.0 2482.7 2945.6 2552.4
RMSE 154.91 154.91 58.93 151.14 54.70
Std.Errors IID by: firm by: firm by: firm by: firm
FE: firm X X
FE: year X X

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

7.7 Comparison of Panel Models

Let’s compare the different panel regression approaches:

# Create a list of models
models = list(
"OLS-IID" = feols(invest ~ capital, data = Grunfeld),
"OLS-CL" = feols(invest ~ capital, data = Grunfeld, cluster = "firm"),
"FE" = feols(invest ~ capital, fixef = "firm", data = Grunfeld, cluster = "firm"),
"Time FE" = feols(invest ~ capital, fixef = "year", data = Grunfeld, cluster = "firm"),
"Two-way FE" = feols(invest ~ capital, fixef = c("firm", "year"), data = Grunfeld, cluster = "firm")

)

# Generate the comparison table with clustered standard errors
modelsummary(models, stars = TRUE)
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7.8 Panel R-squared

In panel data models with fixed effects, two different R-squared measures provide distinct
information about model fit:

Within R-squared

The within R-squared measures the proportion of within-individual variation explained by the
model. For the three different fixed effects specifications, the within R-squared is defined as
follows:

• For individual fixed effects:

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1( ̇𝑌𝑖𝑡 − 𝑋̇𝑋𝑋′

𝑖𝑡 ̂𝛽𝛽𝛽)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1
̇𝑌 2
𝑖𝑡

• For time fixed effects:

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1(𝑌𝑖𝑡 − 𝑌 ⋅𝑡 − (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡)′ ̂𝛽𝛽𝛽)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 ⋅𝑡)2

• For two-way fixed effects:

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1( ̈𝑌𝑖𝑡 − 𝑋̈𝑋𝑋′

𝑖𝑡 ̂𝛽𝛽𝛽)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1
̈𝑌 2
𝑖𝑡

In the panel models for the Grunfeld data, the individual fixed effects model has the highest
within R-squared (0.660), suggesting that within-firm variations in capital explain 66% of
within-firm variations in investment.

This drops to 0.450 in the time fixed effects model, indicating that year-specific factors share
substantial variation with capital stock within each year.

The higher within R-squared for individual fixed effects (0.660) compared to time fixed effects
(0.450) suggests that firm-specific characteristics play a greater role in explaining variation in
investment than year-specific factors.

The two-way fixed effects model shows an intermediate within R-squared (0.606). This model
controls for more confounding factors from both dimensions, resulting in an estimate that is
likely closer to the true causal effect of capital on investment, though with somewhat reduced
statistical power.
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Overall R-squared

The overall R-squared measures how well the complete model (including fixed effects) explains
the total variation:

𝑅2
𝑜𝑣 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1(𝑌𝑖𝑡 − ̂𝑌𝑖𝑡)2

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 )2

Here, ̂𝑌𝑖𝑡 is the fitted value of the corresponding model.

The overall R-squared values reveal how different specifications explain investment variation:
pooled OLS (45.6%), firm fixed effects (92.1%), time fixed effects (48.3%), and two-way fixed
effects (93.2%). The large jump when adding firm fixed effects, compared to the minimal
improvement from time fixed effects, confirms that firm-specific characteristics are far more
important determinants of investment behavior than year-specific factors.

The within R-squared is typically more relevant because it isolates the relationship of inter-
est after controlling for unobserved heterogeneity. However, if you’re interested in overall
predictive power, the overall R-squared provides that information.

Fitted Values

The overall R-squared requires the computation of the fitted values ̂𝑌𝑖𝑡. To compute them, we
require some estimates or averages of the fixed effects themselves.

• For individual fixed effects:

̂𝑌𝑖𝑡 = ̂𝛼𝑖 + 𝑋𝑋𝑋′
𝑖𝑡 ̂𝛽𝛽𝛽

̂𝛼𝑖 = 𝑌 𝑖⋅ − 𝑋𝑋𝑋′
𝑖⋅ ̂𝛽𝛽𝛽

• For time fixed effects:

̂𝑌𝑖𝑡 = 𝜆̂𝑡 + 𝑋𝑋𝑋′
𝑖𝑡 ̂𝛽𝛽𝛽

𝜆̂𝑡 = 𝑌 ⋅𝑡 − 𝑋𝑋𝑋′
⋅𝑡 ̂𝛽𝛽𝛽

• For two-way fixed effects:
̂𝑌𝑖𝑡 = ̂𝛼𝑖 + 𝜆̂𝑡 − ̂𝜇 + 𝑋𝑋𝑋′

𝑖𝑡 ̂𝛽𝛽𝛽,
where

̂𝛼𝑖 = 𝑌 𝑖⋅ − 𝑋𝑋𝑋′
𝑖⋅ ̂𝛽𝛽𝛽 − ̂𝜇

𝜆̂𝑡 = 𝑌 ⋅𝑡 − 𝑋𝑋𝑋′
⋅𝑡 ̂𝛽𝛽𝛽 − ̂𝜇

̂𝜇 = 𝑌 − 𝑋𝑋𝑋′ ̂𝛽𝛽𝛽
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While these fixed effects estimates are useful for calculating fitted values, they are not recom-
mended for direct interpretation. Fixed effects capture all time-invariant (or unit-invariant)
factors, observed and unobserved, making them a “black box” rather than specific causal
parameters.

7.9 Application: Traffic Fatalities

To illustrate the importance of fixed effects in empirical work, let’s examine how government
policies affect traffic fatalities. We’ll use the Fatalities dataset from the AER package, which
contains panel data on traffic fatalities, drunk driving laws, and beer taxes for U.S. states from
1982 to 1988.

data(Fatalities, package = "AER")
# Create the fatality rate per 10,000 population
Fatalities$fatal_rate = Fatalities$fatal / Fatalities$pop * 10000

Cross-sectional Analysis

First, let’s examine the relationship between beer taxes and traffic fatality rates using pooled
OLS:

fatal_cs = feols(fatal_rate ~ beertax, data = Fatalities, cluster = "state")
summary(fatal_cs)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.853308 0.118519 15.63719 < 2.2e-16 ***
beertax 0.364605 0.119686 3.04636 0.0037916 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.542116 Adj. R2: 0.090648

Surprisingly, we find a positive relationship between beer taxes and fatality rates. This coun-
terintuitive result likely stems from omitted variable bias.
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Fixed Effects Approach

Now, let’s use the panel structure to control for unobserved state-specific factors:

# State fixed effects model
fatal_fe = feols(fatal_rate ~ beertax, fixef = "state", data = Fatalities, cluster = "state")
summary(fatal_fe)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Fixed-effects: state: 48
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
beertax -0.655874 0.291856 -2.24725 0.029358 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.17547 Adj. R2: 0.889129

Within R2: 0.040745

With state fixed effects, the coefficient becomes negative, aligning with our theoretical expec-
tation that higher beer taxes should reduce drunk driving and fatalities.

Let’s add time fixed effects

# State fixed effects model
fatal_twoway = feols(fatal_rate ~ beertax, fixef = c("state", "year"), data = Fatalities, cluster = "state")
summary(fatal_twoway)

OLS estimation, Dep. Var.: fatal_rate
Observations: 336
Fixed-effects: state: 48, year: 7
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
beertax -0.63998 0.357078 -1.79227 0.079528 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.171819 Adj. R2: 0.891425

Within R2: 0.036065

Finally, let’s add control variables that are neither constant over time nor across states:
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Fatalities$punish = ifelse(Fatalities$jail == "yes" | Fatalities$service == "yes",
"yes", "no")

fatal_full = feols(fatal_rate ~ beertax + drinkage + punish + miles + unemp + log(income), fixef = c("state", "year"),
data = Fatalities, cluster = "state")

NOTE: 1 observation removed because of NA values (RHS: 1).

summary(fatal_full)

OLS estimation, Dep. Var.: fatal_rate
Observations: 335
Fixed-effects: state: 48, year: 7
Standard-errors: Clustered (state)

Estimate Std. Error t value Pr(>|t|)
beertax -0.45646674 0.30680756 -1.487795 0.14348400
drinkage -0.00215674 0.02151945 -0.100223 0.92059358
punishyes 0.03898148 0.10316089 0.377871 0.70722783
miles 0.00000898 0.00000710 1.265052 0.21208923
unemp -0.06269441 0.01322938 -4.739031 0.00002021 ***
log(income) 1.78643540 0.64339251 2.776587 0.00786399 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.140556 Adj. R2: 0.926185

Within R2: 0.356781

This comprehensive model still produces a negative coefficient, though effect becomes insignif-
icant with the addition of control variables.

# Create model list
fatal_models = list(
fatal_cs,
fatal_fe,
fatal_twoway,
fatal_full

)
# Generate comparison table
modelsummary(fatal_models, stars = TRUE)

The changing sign of the beertax coefficient across specifications illustrates the importance of
controlling for unobserved heterogeneity in panel data:
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(1) (2) (3) (4)
(Intercept) 1.853***

(0.119)
beertax 0.365** −0.656* −0.640+ −0.456

(0.120) (0.292) (0.357) (0.307)
drinkage −0.002

(0.022)
punishyes 0.039

(0.103)
miles 0.000

(0.000)
unemp −0.063***

(0.013)
log(income) 1.786**

(0.643)
Num.Obs. 336 336 336 335
R2 0.093 0.905 0.909 0.939
R2 Adj. 0.091 0.889 0.891 0.926
R2 Within 0.041 0.036 0.357
R2 Within Adj. 0.037 0.033 0.343
AIC 546.1 −117.9 −120.1 −243.9
BIC 553.7 69.1 89.9 −15.1
RMSE 0.54 0.18 0.17 0.14
Std.Errors by: state by: state by: state by: state
FE: state X X X
FE: year X X

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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1. In the pooled model, the positive coefficient might reflect that states with higher fatality
rates tend to implement higher beer taxes as a policy response.

2. Once we control for state fixed effects, we isolate the within-state variation and find the
expected negative relationship: when a state raises its beer tax, fatality rates decrease.

3. Adding year fixed effects accounts for national trends in fatality rates, such as changes
in vehicle safety technology or nationwide campaigns against drunk driving.

4. In the full model with additional controls, the beer tax coefficient remains negative but
loses statistical significance. This suggests that its effect may be partially captured by
other policy variables or that we lack statistical power to precisely estimate the effect
when including multiple controls.

7.10 R-codes

metrics-sec06.R
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Part IV

Causal Inference
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