
8 Endogeneity

8.1 The Linear Model and Exogeneity

So far we have written the conditional mean of an outcome 𝑌𝑖 as a linear function of observed
covariates 𝑋𝑋𝑋𝑖:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖,

𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 (A1)

If (A1) holds, then 𝐸[𝑌𝑖 ∣ 𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽, which makes 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 the best predictor of 𝑌𝑖 given 𝑋𝑋𝑋𝑖.
Each coefficient 𝛽𝑗 is a conditional marginal effect:

Interpretation: “Among individuals who share the same values of all included
control variables, those whose 𝑋𝑖𝑗 is higher by one unit have, on average, a 𝑌𝑖 that
is higher by 𝛽𝑗.”

So far the course has provided three empirical tactics to narrow the gap between correlation
and causation:

• Add observed confounders. Whenever economic theory identifies a variable that influ-
ences both 𝑋𝑖𝑗 and 𝑌𝑖, we try to measure it and augment 𝑋𝑋𝑋𝑖.

• Exploit panel structure. With panel data data we include individual and time fixed
effects to control for unobserved factors that are constant across individuals or time
periods.

• Use flexible functional forms. Polynomials, interactions, or other transformations can
absorb nonlinearities that would otherwise leak into 𝑢𝑖.

Even after taking these steps, important issues remain. For example, there may be reverse
causality, which occurs when 𝑌𝑖 feeds back into 𝑋𝑖. Additionally, there may be control variables
with a dual role that act as both confounders and mediators/colliders simultaneously.

Nothing in (A1) – nor in the additional assumptions (A2)–(A4) about i.i.d. sampling, finite
moments, and full rank – guarantees that 𝛽𝑗 is causal. It represents only a conditional
correlative relationship unless 𝑋𝑖𝑗 is uncorrelated with all unobserved determinants of 𝑌𝑖.
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8.2 Conditional vs Causal Effects: Price Elasticities

Economists often want causal price effects, not merely conditional associations. Consider
the following structural system in a competitive market written in logs so that slopes are
elasticities:

Demand: log(𝑄𝑖) = 𝛽1 + 𝛽2 log(𝑃𝑖) + 𝑢𝑖,
Supply (pricing rule): log(𝑃𝑖) = 𝛾1 + 𝛾2 log(𝐶𝑖) + 𝛾3𝑢𝑖 + 𝜂𝑖.

We have 𝛽2 < 0 by theory.

• Index 𝑖 denotes a market (e.g., city or store) observed at a single point in time; the data
are cross‑sectional and i.i.d.

• 𝑄𝑖 is the total quantity demanded in market 𝑖.
• 𝑃𝑖 is price.
• 𝐶𝑖 is the exogenous wholesale cost of the product.
• 𝑢𝑖 captures consumers’ taste shocks unobserved by the econometrician (though retailers

may infer them and respond when setting prices); 𝜂𝑖 captures supply‑side shocks.

Because higher demand (large 𝑢𝑖) in a particular store leads retailers to charge higher prices
(𝛾3 > 0), we have 𝐶𝑜𝑣(log(𝑃𝑖), 𝑢𝑖) > 0. Hence, (A1) is violated in the demand equation.

Suppose a researcher estimates

log(𝑄𝑖) = 𝛼1 + 𝛼2 log(𝑃𝑖) + 𝜀𝑖

or
log(𝑄𝑖) = 𝜃1 + 𝜃2 log(𝑃𝑖) + 𝜃3 log(𝐶𝑖) + 𝑣𝑖

Both regressions (one simple and one with wholesale‑cost controls) deliver conditional marginal
effects 𝛼2 or 𝜃2. They answer

“Among markets with the same wholesale cost (and any other included controls),
how does observed quantity co‑move with observed price?”

But the policy‑relevant question is different:

“By how much would quantity fall if we exogenously raised price – say, via a 1%
tax – holding everything else constant?”

That causal elasticity is 𝛽2. Because 𝑃𝑖 responds to 𝑢𝑖, OLS estimates suffer simultaneity bias
and 𝛼2 or 𝜃2 generally differ from 𝛽2.

Endogeneity arises because we want the parameter to be causal, not because the regression
is mechanically misspecified. Even if the conditional mean is correctly linear, interpreting 𝛽2
causally implies 𝐶𝑜𝑣(log(𝑃𝑖), 𝑢𝑖) ≠ 0.
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8.3 Measurement Error

Another important source of endogeneity arises from measurement error. Suppose we consider
the structural model:

𝑌 0
𝑖 = 𝛽1 + 𝛽2𝑋0

𝑖 + 𝑢0
𝑖 , 𝑖 = 1, … , 𝑛, 𝑢0

𝑖 ∼ i.i.d.(0, 𝜎2),

but we do not observe the latent variables 𝑌 0
𝑖 and 𝑋0

𝑖 directly. Instead, we observe:

𝑌𝑖 = 𝑌 0
𝑖 + 𝜂𝑖, 𝑋𝑖 = 𝑋0

𝑖 + 𝜁𝑖,

where 𝜂𝑖 ∼ i.i.d.(0, 𝜎2
𝜂) and 𝜁𝑖 ∼ i.i.d.(0, 𝜎2

𝜁) denote classical measurement errors that are
assumed independent of each other and of 𝑋0

𝑖 , 𝑌 0
𝑖 , and 𝑢0

𝑖 .

Plugging the observed variables into the structural equation yields:

𝑌𝑖 − 𝜂𝑖 = 𝛽1 + 𝛽2(𝑋𝑖 − 𝜁𝑖) + 𝑢0
𝑖 ,

which can be rearranged as:

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + (𝑢0
𝑖 + 𝜂𝑖 − 𝛽2𝜁𝑖)⏟⏟⏟⏟⏟⏟⏟

composite error term

.

The composite error term is problematic:

𝐸[𝑢0
𝑖 + 𝜂𝑖 − 𝛽2𝜁𝑖 ∣ 𝑋𝑖] ≠ 0,

because 𝑋𝑖 contains 𝜁𝑖, which also appears in the error term. This violates the exogeneity
condition, resulting in a biased and inconsistent OLS estimator. Specifically, the bias tends
to attenuate the coefficient estimate ̂𝛽2 toward zero (known as attenuation bias). For positive
true coefficients, this leads to underestimation; for negative coefficients, overestimation.

By contrast, if only the dependent variable 𝑌𝑖 is measured with error, OLS remains unbiased,
although the variance of the error term increases.
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8.4 Endogeneity as a Violation of (A1)

Formally, a regressor 𝑋𝑖𝑗 is endogenous if it correlates with the structural error term:

𝐶𝑜𝑣(𝑋𝑖𝑗, 𝑢𝑖) ≠ 0 ⇒ 𝐸[𝑢𝑖 ∣ 𝑋𝑖] ≠ 0

When this happens, OLS estimates remain descriptive but lose their causal interpretation.
Whether you care depends on your goal:

Purpose Is (A1) needed? Parameter meaning
Prediction /
description

No. Bias relative to causal truth is
irrelevant if forecasting is the aim.

Conditional marginal effect

Causal policy
evaluation

Yes! You need 𝐸[𝑢|𝑋] = 0 in the
causal sense, or an alternative
identification strategy.

Structural (causal) effect

8.5 Sources of Endogeneity

Besides the functional-form misspecification that we have already discussed in previous sec-
tions, there are four other common sources of endogeneity in practice:

Mechanism Typical manifestation
Omitted‑variable bias Unobserved ability affects both schooling (𝑋) and wages

(𝑌 )
Simultaneity / reverse
causality

Price and quantity determined jointly in markets

Measurement error in 𝑋 Measurement error inflates the variance of the regressor,
so OLS slopes are biased toward zero (attenuation bias)

Dual role controls A variable (e.g., health) acts as both confounder and
mediator/collider

All four cases yield 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] ≠ 0 and threaten causal inference.

We have
𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] ≠ 𝛽𝛽𝛽.
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