8 Endogeneity

8.1 The Linear Model and Exogeneity

So far we have written the conditional mean of an outcome Y; as a linear function of observed
covariates X:

Elu; | X;] =0 (A1)

If (A1) holds, then E[Y; | X,] = X8, which makes X8 the best predictor of Y; given X,.
Each coeflicient 3; is a conditional marginal effect:

Interpretation: “Among individuals who share the same values of all included
control variables, those whose X,; is higher by one unit have, on average, a'Y; that
is higher by B;.”

So far the course has provided three empirical tactics to narrow the gap between correlation
and causation:

e Add observed confounders. Whenever economic theory identifies a variable that influ-
ences both X;; and Y}, we try to measure it and augment X .

o Exploit panel structure. With panel data data we include individual and time fixed
effects to control for unobserved factors that are constant across individuals or time
periods.

e Use flexible functional forms. Polynomials, interactions, or other transformations can
absorb nonlinearities that would otherwise leak into ;.

Even after taking these steps, important issues remain. For example, there may be reverse
causality, which occurs when Y, feeds back into X,. Additionally, there may be control variables
with a dual role that act as both confounders and mediators/colliders simultaneously.

Nothing in (A1) — nor in the additional assumptions (A2)—(A4) about i.i.d. sampling, finite
moments, and full rank — guarantees that 3, is causal. It represents only a conditional
correlative relationship unless X;; is uncorrelated with all unobserved determinants of Y;.
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8.2 Conditional vs Causal Effects: Price Elasticities

Economists often want causal price effects, not merely conditional associations. Consider
the following structural system in a competitive market written in logs so that slopes are
elasticities:

Demand: log(Q;) = B, + B, log(F;) + u;,
Supply (pricing rule): log(P;) = vy + 72 log(C;) + v3u; + n;-

We have 3, < 0 by theory.

o Index i denotes a market (e.g., city or store) observed at a single point in time; the data
are cross-sectional and i.i.d.

o (), is the total quantity demanded in market i.

e P, is price.

e (; is the exogenous wholesale cost of the product.

o wu,; captures consumers’ taste shocks unobserved by the econometrician (though retailers
may infer them and respond when setting prices); 7, captures supply-side shocks.

Because higher demand (large u,) in a particular store leads retailers to charge higher prices
(75 > 0), we have Cov(log(P;),u;) > 0. Hence, (A1) is violated in the demand equation.

Suppose a researcher estimates
log(Q;) = oy + aylog(P)) +¢;

or
log(Q;) = 0, + 0y1og(P;) + 0310g(C;) + v;

Both regressions (one simple and one with wholesale-cost controls) deliver conditional marginal
effects a, or 6,. They answer

“Among markets with the same wholesale cost (and any other included controls),
how does observed quantity co-move with observed price?”

But the policy-relevant question is different:

“By how much would quantity fall if we exogenously raised price — say, via a 1%
tax — holding everything else constant?”

That causal elasticity is 3,. Because P, responds to u;, OLS estimates suffer simultaneity bias
and o or 0, generally differ from f,.

Endogeneity arises because we want the parameter to be causal, not because the regression
is mechanically misspecified. Even if the conditional mean is correctly linear, interpreting /3,
causally implies Cov(log(P;),u;) # 0.
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8.3 Measurement Error

Another important source of endogeneity arises from measurement error. Suppose we consider
the structural model:

YO =6+ B,X0+uf, i=1,....,n, u?~iid.(0,02),

but we do not observe the latent variables V! and X? directly. Instead, we observe:

Y, =Y +n, X,=X]+(,

where n; ~ i.i.d.(O,U%) and (; ~ i.i.d.(O,ag) denote classical measurement errors that are
assumed independent of each other and of X?,Y?, and u.

Plugging the observed variables into the structural equation yields:

Y —n; = By + Bo(X; — ;) + ud,

which can be rearranged as:

Y; =By + BoXi + (uf +1m; — BoGy) -

composite error term

The composite error term is problematic:

E[u? +m; — B2G; | X;] # 0,

because X, contains (;, which also appears in the error term. This violates the exogeneity
condition, resulting in a biased and inconsistent OLS estimator. Specifically, the bias tends
to attenuate the coefficient estimate 3, toward zero (known as attenuation bias). For positive
true coefficients, this leads to underestimation; for negative coefficients, overestimation.

By contrast, if only the dependent variable Y, is measured with error, OLS remains unbiased,
although the variance of the error term increases.
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8.4 Endogeneity as a Violation of (Al)

Formally, a regressor X;; is endogenous if it correlates with the structural error term:
Cov(Xjj,u;) #0 = Eluy [ X;] #0

When this happens, OLS estimates remain descriptive but lose their causal interpretation.
Whether you care depends on your goal:

Purpose Is (A1) needed? Parameter meaning
Prediction / No. Bias relative to causal truth is  Conditional marginal effect
description irrelevant if forecasting is the aim.

Causal policy Yes! You need E[u|X] =0 in the  Structural (causal) effect
evaluation causal sense, or an alternative

identification strategy.

8.5 Sources of Endogeneity

Besides the functional-form misspecification that we have already discussed in previous sec-
tions, there are four other common sources of endogeneity in practice:

Mechanism Typical manifestation

Omitted-variable bias Unobserved ability affects both schooling (X) and wages
)

Simultaneity / reverse Price and quantity determined jointly in markets

causality

Measurement error in X Measurement error inflates the variance of the regressor,
so OLS slopes are biased toward zero (attenuation bias)

Dual role controls A variable (e.g., health) acts as both confounder and
mediator/collider

All four cases yield E[u|X] # 0 and threaten causal inference.

We have R
E[BIX] = B+ (X'X)"'X'E[ulX] # .
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