8 Endogeneity

8.1 The Linear Model and Exogeneity

So far we have written the conditional mean of an outcome Y_i as a linear function of observed covariates X_i :

$$\begin{split} Y_i &= \boldsymbol{X}_i' \boldsymbol{\beta} + \boldsymbol{u}_i, \\ E[\boldsymbol{u}_i \mid \boldsymbol{X}_i] &= 0 \end{split} \tag{A1}$$

If (A1) holds, then $E[Y_i \mid \boldsymbol{X}_i] = \boldsymbol{X}_i'\boldsymbol{\beta}$, which makes $\boldsymbol{X}_i'\boldsymbol{\beta}$ the best predictor of Y_i given \boldsymbol{X}_i . Each coefficient β_i is a **conditional marginal effect**:

Interpretation: "Among individuals who share the same values of all included control variables, those whose X_{ij} is higher by one unit have, on average, a Y_i that is higher by β_i ."

So far the course has provided three empirical tactics to narrow the gap between correlation and causation:

- Add observed confounders. Whenever economic theory identifies a variable that influences both X_{ij} and Y_i , we try to measure it and augment X_i .
- Exploit panel structure. With panel data data we include individual and time fixed
 effects to control for unobserved factors that are constant across individuals or time
 periods.
- Use flexible functional forms. Polynomials, interactions, or other transformations can absorb nonlinearities that would otherwise leak into u_i .

Even after taking these steps, important issues remain. For example, there may be reverse causality, which occurs when Y_i feeds back into X_i . Additionally, there may be control variables with a dual role that act as both confounders and mediators/colliders simultaneously.

Nothing in (A1) – nor in the additional assumptions (A2)–(A4) about i.i.d. sampling, finite moments, and full rank – guarantees that β_j is **causal**. It represents only a conditional **correlative** relationship unless X_{ij} is uncorrelated with all unobserved determinants of Y_i .

8.2 Conditional vs Causal Effects: Price Elasticities

Economists often want *causal* price effects, not merely conditional associations. Consider the following structural system in a competitive market written in logs so that slopes are elasticities:

We have $\beta_2 < 0$ by theory.

- Index i denotes a market (e.g., city or store) observed at a single point in time; the data are cross-sectional and i.i.d.
- Q_i is the total quantity demanded in market i.
- P_i is price.
- C_i is the exogenous wholesale cost of the product.
- u_i captures consumers' taste shocks unobserved by the econometrician (though retailers may infer them and respond when setting prices); η_i captures supply-side shocks.

Because higher demand (large u_i) in a particular store leads retailers to charge higher prices $(\gamma_3 > 0)$, we have $Cov(\log(P_i), u_i) > 0$. Hence, (A1) is violated in the demand equation.

Suppose a researcher estimates

$$\log(Q_i) = \alpha_1 + \alpha_2 \log(P_i) + \varepsilon_i$$

or

$$\log(Q_i) = \theta_1 + \theta_2 \log(P_i) + \theta_3 \log(C_i) + v_i$$

Both regressions (one simple and one with wholesale-cost controls) deliver conditional marginal effects α_2 or θ_2 . They answer

"Among markets with the same wholesale cost (and any other included controls), how does observed quantity co-move with observed price?"

But the policy-relevant question is different:

"By how much would quantity fall if we exogenously raised price – say, via a 1% tax – holding everything else constant?"

That causal elasticity is β_2 . Because P_i responds to u_i , OLS estimates suffer simultaneity bias and α_2 or θ_2 generally differ from β_2 .

Endogeneity arises because we want the parameter to be causal, not because the regression is mechanically misspecified. Even if the conditional mean is correctly linear, interpreting β_2 causally implies $Cov(\log(P_i), u_i) \neq 0$.

8.3 Measurement Error

Another important source of endogeneity arises from measurement error. Suppose we consider the structural model:

$$Y_i^0 = \beta_1 + \beta_2 X_i^0 + u_i^0, \quad i = 1, ..., n, \quad u_i^0 \sim \text{i.i.d.}(0, \sigma^2),$$

but we do not observe the latent variables Y_i^0 and X_i^0 directly. Instead, we observe:

$$Y_i = Y_i^0 + \eta_i, \quad X_i = X_i^0 + \zeta_i,$$

where $\eta_i \sim \text{i.i.d.}(0, \sigma_\eta^2)$ and $\zeta_i \sim \text{i.i.d.}(0, \sigma_\zeta^2)$ denote classical measurement errors that are assumed independent of each other and of X_i^0, Y_i^0 , and u_i^0 .

Plugging the observed variables into the structural equation yields:

$$Y_i - \eta_i = \beta_1 + \beta_2 (X_i - \zeta_i) + u_i^0$$

which can be rearranged as:

$$Y_i = \beta_1 + \beta_2 X_i + \underbrace{\left(u_i^0 + \eta_i - \beta_2 \zeta_i\right)}_{\text{composite error term}}.$$

The composite error term is problematic:

$$E[u_i^0 + \eta_i - \beta_2 \zeta_i \mid X_i] \neq 0,$$

because X_i contains ζ_i , which also appears in the error term. This violates the exogeneity condition, resulting in a biased and inconsistent OLS estimator. Specifically, the bias tends to attenuate the coefficient estimate $\hat{\beta}_2$ toward zero (known as attenuation bias). For positive true coefficients, this leads to underestimation; for negative coefficients, overestimation.

By contrast, if only the dependent variable Y_i is measured with error, OLS remains unbiased, although the variance of the error term increases.

8.4 Endogeneity as a Violation of (A1)

Formally, a regressor X_{ij} is **endogenous** if it correlates with the structural error term:

$$Cov(X_{ij}, u_i) \neq 0 \quad \Rightarrow \quad E[u_i \mid X_i] \neq 0$$

When this happens, OLS estimates remain descriptive but lose their causal interpretation. Whether you care depends on your goal:

Purpose	Is (A1) needed?	Parameter meaning
Prediction / description	No. Bias relative to causal truth is irrelevant if forecasting is the aim.	Conditional marginal effect
Causal policy evaluation	Yes! You need $E[u X] = 0$ in the Structural (causal) effect causal sense, or an alternative	
	identification strategy.	

8.5 Sources of Endogeneity

Besides the functional-form misspecification that we have already discussed in previous sections, there are four other common sources of endogeneity in practice:

Mechanism	Typical manifestation
Omitted-variable bias	Unobserved ability affects both schooling (X) and wages (Y)
Simultaneity / reverse causality	Price and quantity determined jointly in markets
Measurement error in X	Measurement error inflates the variance of the regressor, so OLS slopes are biased toward zero (attenuation bias)
Dual role controls	A variable (e.g., health) acts as both confounder and mediator/collider

All four cases yield $E[\boldsymbol{u}|\boldsymbol{X}] \neq 0$ and threaten causal inference.

We have

$$E[\hat{\boldsymbol{\beta}}|\boldsymbol{X}] = \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'E[\boldsymbol{u}|\boldsymbol{X}] \neq \boldsymbol{\beta}.$$