O Instrumental Variables

library(fixest)

In Section 8, we discussed endogeneity problems that lead to the inconsistency of the ordinary
least squares (OLS) estimator. One important solution is the instrumental variables (IV)
method, which allows for consistent estimation under certain conditions when regressors are
endogenous.

9.1 Endogenous Regressors Model

In most applications only a subset of the regressors are treated as endogenous.

Let’s assume that we have k endogenous regressors X, = (X,,...,X;.)” and r exogenous
regressors W, = (1, Wiy, ..., W,,.)".

In many practical applications the number of endogenous regressors k is small (like 1 or 2).
The exogenous regressors W, include the intercept, which is constant and therefore exogenous,
and all control variables for which we do not wish to interpret their coefficients in a causal
sense.

Consider the linear model equation:
Y, =XB+Wry+u;,, i=1,..,n. (9.1)
We have

o the dependent variable Y;

o the error term wu,;

« the endogenous regressors X,; = (X1, ..., X;1)’;

o the regression coefficients of interest B;

o the remaining r regressors W, = (1, W,,, ..., W,,)’, which are assumed to be exogenous
or simply control variables;

o the regression coefficients of the exogenous variables =.

Recall (A1), which is in this case given by E[u,;|X,, W;] = 0 but fails under endogeneity.

Since X is endogenous, we have E[X,u,;| # 0, which is a violation of (Al). Thus, the OLS
estimator B for B is inconsistent.
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0.2 Instrumental Variables Model

To consistently estimate 8 in the endogenous regressors model we require additional informa-
tion. One type of information which is commonly used in economic applications are what we
call instruments.

A vector of instrumental variables (IV) Z, = (Z,,...,Z,,,) for the endogenous variable
X,j is a variable that is

1) relevant, meaning that it has a non-zero conditional marginal effect on X, after con-
trolling for W,. That is, when regressing X;; on Z; and W, we have:

Xiyy=2Zimj+ Wimy; + vy, m; #0. (9.2)
2) exogenous with respect to the error term u,, i.e.:
E[Z;u;) = 0. (9.3)

This means Z; doesn’t have a direct causal effect on Y; after controlling for W, only an
indirect effect through the endogenous variable X,,.

If there are k endogenous regressors, we need at least k£ instruments. If m = k, we say that
the coefficients are exactly identified and if m > k we say that they are overidentified. Then
the relevance condition can be expressed jointly as:

rank(E[ZiX;D =k (9.4)

where Z, := (Z,,W))’.

Because my; # 0, some part of the variation in X;; can be explained by Z,. Because Z, is
exogenous, that part of the variation in X;; explained by Z, is exogenous as well and can be
used to estimate j; consistently.

Example 1: Years of schooling -> wage (returns to education). Ability bias: unobserved
ability affects both education choices and wages. Possible instruments for years of schooling:
distance to nearest colleges, school construction programs, quarter-of-birth, birth order.

Example 2: Market price -> quantity demanded (price elasticity of demand). Simultaneity:
quantity demanded feeds back into equilibrium price. Possible instruments for market price:
input-costs (e.g., raw materials, energy costs), weather conditions, tax changes.

Example 3: Police presence -> crime (deterrence effect). Reverse causality: more police
are deployed to high-crime areas. Possible instruments for police presence: election cycles,
sports/large public events, fire-fighters employment.

The idea of instrumental variable regression is to decompose the endogenous regressor X ;
into two parts: the “good” exogenous variation explained by the exogenous instruments Z,
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and further exogenous control variables, and the “bad” endogenous variation that is correlated
with the error term wu,.

This is exactly what is done in Equation 9.2: Zim,;+W/m,; is the part of X,; that is exogenous
and v;; is the part of X;; that is endogenous.

9.3 Two Stage Least Squares

The two stage least squares (TSLS) estimator exploits exactly the idea discussed above: first
extracting the exogenous part of the endogenous regressors explained by the instruments as
described in Equation 9.2 and then use only this exogenous part to estimate the causal rela-
tionship of interest.

The first stage regression is:

This equation is sometimes called the reduced form equation for X,;. We estimate this regres-
sion for j = 1,..., k and collect the fitted values

XZ]:Z:,%L]_FW’Z%Q]’ ]: 1,...,]{:, Z: 1,...,7’1;.

Let N
X’L':(Xi17"'7Xik>/7 Z.:17...,n.
be the vector of the fitted values for the k endogenous variables from the first stage.
Note that X ; is a function of Z, and W, and is therefore exogenous, i.e., uncorrelated with
ui.

Then, the second stage regression is
YV, =XB+Whn+uw, i=1..n. (9.5)

Note that w, absorbs v,;, the part of X;; that is endogenous. Therefore, the second stage re-
gression does not suffer any more from an endogeneity problem and can be used to consistently
estimate .

The OLS estimator of the second stage (Equation 9.5), denoted as BTS s is called the two-
stage least squares estimator for S.
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9.4 TSLS Assumptions

Al-iv) Elu;|W ;] = 0.
A2-iv) (Y, X[, W, Z])"" | is an i.i.d. sample.
A3-iv)

All variables have finite kurtosis.

(
(
(
(A4-iv) The instrument exogeneity and relevance conditions from Equation 9.3 and Equa-
tion 9.4 hold, and E[ZzZ;] is invertible

(Al-iv) is the exogeneity condition for the control variables W ,.
(A2-iv) is the standard random sampling assumption for the data.
(A3-iv) is the standard light-tails assumption, meaning large outliers are unlikely

(A4-iv) is the exogeneity and relevance condition for the instruments together with a condition
that excludes perfect multicollinearity

9.5 Large-Sample Properties of TSLS
Under assumptions (Al-iv)—(A4-iv), the TSLS estimator is consistent:

,BTSLS £> B (asn — o00).

Furthermore, the estimator is asymptotically normal:

ViBrsrs —B) > N(0,Visrs),

where
Vrsts = QxzQ72Q2x) ' Qx7Q750Q7,Q 7x(Qx,Q75Q 7x)
with , , ,
Qxz =EX,Z)). Qux=ElZX], Qz;=FEZZ] Q=E[ZZ)
The asymptotic variance can be estimated as:

n —1

-1 n n
—~ n 1 ~ 1 PO —~7 1 ~
Visps = n—k—r(n leixi> (n Z;uiXiXi> (n Z;Xin)

This is the HC1 covariance matrix estimator for the TSLS estimator. It can be used to
construct confidence intervals, t-tests, and F-tests in the usual way as discussed in previous
sections.
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9.6 Example: Return of Education

Consider a wage equation for a cross-section of 429 married women:
log(wage) = ) + Boeduc; + Bsexper; + B exper? + u;,
where

e wage is the wife’s 1975 average hourly earnings
e educ is her educational attainment in years
e exper are the actual years of her labor market experience

We use the dataset mroz available in this repository: link.

OLS yields:

feols(log(wage) ~ educ + exper + exper~2, data = mroz, vcov = "HC1")

OLS estimation, Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.522041 0.201650 -2.58884 9.9611e-03 *x*
educ 0.107490 0.013219 8.13147 4.7203e-15 *xx
exper 0.041567 0.015273 2.72156 6.7651e-03 *x*
I(exper~2) -0.000811 0.000420 -1.93108 5.4139e-02 .
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.663299 Adj. R2: 0.150854

If educ is correlated with omitted variables like ability or motivation, the estimated coefficient
for educ does not represent the causal effect of educ on wage.

Ability is an unobserved confounder that affects both educ and wage.

In the following, we assume that mother’s education (mothereduc) is a valid instrument for
educ in the wage equation because:

1) mothereduc should not appear in a wife’s wage equation

2) Instrument relevance: mothereduc should be correlated with educ: high educated mothers
typically have high educated daughters

3) Instrument exogeneity: assume that a woman’s ability and motivation are uncorrelated
with mothereduc
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The first stage regression is:

firststage = lm(educ ~ mothereduc + exper + I(exper~2), data = mroz)
firststage

Call:
lm(formula = educ ~ mothereduc + exper + I(exper~2), data = mroz)
Coefficients:
(Intercept) mothereduc exper I(exper~2)
9.775103 0.267691 0.048862 -0.001281

The second stage regression is:

Xhat = firststage$fitted.values
secondstage = 1lm(log(wage) ~ Xhat + exper + I(exper~2), data = mroz)
secondstage

Call:
Im(formula = log(wage) ~ Xhat + exper + I(exper”2), data = mroz)

Coefficients:
(Intercept) Xhat exper I(exper~2)
0.1981861 0.0492630 0.0448558 -0.0009221

Note that standard errors from these two separate steps should not be used. Instead, the
feols function gives you the correct standard errors by using the following notation:

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)

Endo. : educ

Instr. : mothereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.198186 0.489146 0.405167 0.6855588
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fit_educ 0.049263 0.038040 1.295045 0.1960095

exper 0.044856 0.015604 2.874667 0.0042481 *x*

I(exper~2) -0.000922 0.000432 -2.135025 0.0333316 *

Signif. codes: O 'x*x*' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

RMSE: 0.67642 Adj. R2: 0.116926

F-test (1st stage), educ: stat = 73.9 , P
Wu-Hausman: stat = 2.9683, p

A

2.2e-16 , on 1 and 424 DoF.
0.085642, on 1 and 423 DoF.

e The coefficient for educ drops from 0.107 to 0.059

¢ OLS overestimates the impact of education on wages

The t-statistic has a p-value of 0.19

e Using mothereduc as an instrument, educ is no longer significant

To improve the precision of the IV estimator, we can include further instruments like fathere-
duc

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 =*x
I(exper~2) -0.000899 0.000430 -2.090220 0.0371931 *
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551  Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , P < 2.2e-16 , on 2 and 423 DoF.
Wu-Hausman: stat 2.79259 , p 0.095441, on 1 and 423 DoF.
Sargan: stat 0.378071, p = 0.538637, on 1 DoF.

o Estimated return to education increases from 0.049 to 0.061

e The t-statistic has a p-value of 0.066

e Stronger instruments leads to more efficient IV estimation: educ is now significantly
different from zero at least at the 10% level.
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9.7 1V Diagnostics

The TSLS estimator relies on the exogeneity and relevance of the instruments. In empirical
applications, these assumptions should be critically assessed. This section introduces three
diagnostic tools used to evaluate different aspects of the IV strategy:

e The F-test for instrument relevance
e The Sargan test for instrument exogeneity
e The Wu-Hausman test for regressor endogeneity

F-test for instrument relevance
The first-stage F-test indicates whether the instruments Z, € R contain enough informa-
tion about the endogenous regressors X, € R¥, conditional on the exogenous controls W,.
Consider the one endogenous regressor k = 1 case with the first-stage regression,
Xi — Z,:ﬂ-l + W;ﬂ-z + 'Ui,
and test the joint null hypothesis
HO : 71’1 - 0.

To compute the F-statistic for this hypothesis, we follow the usual procedure and use a suit-
able robust covariance matrix (e.g., HC1 or cluster-robust), with an F-statistic whose null
distribution is asymptotically F},

If the statistic exceeds its critical value you reject H,, and conclude the instruments are rele-
vant.

Large-n 5% critical values for F are 3.84 for m = 1, 3.00 for m = 2, 2.60 for m = 3,

m,00

etc. (compute with qf (.95, m, Inf)).
Weak instruments

Relevance alone is not enough: the instruments may be weak if their correlation with X,
is small. Weakness matters because two-stage least squares (2SLS) can then suffer a large
finite-sample bias toward OLS. Define the relative bias

E [/B:TSLS] — 0 '
ElBors] — B

Staiger and Stock (1997) and Stock and Yogo (2005) derive critical values for the homoskedastic
first-stage statistic that control the null hypothesis “relative bias > 10% of the OLS bias” at

relBias =
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the 5% significance level. With one instrument the 5% cut-off is approximately 10. Hence,
the following rule of thumb is established in applied work:

First-stage F' > 10 = instruments strong
First-stage FF <10 = instruments weak

This is a quick approximation that relies on the homoskedasticity assumption and only works
well when m is small.

For heteroskedastic (or cluster-robust) settings, Montiel Olea and Pflueger (2013) replace the
standard rule of thumb: To reject the null hypothesis of a relative bias larger than 10% at the
5% level you need a robust F-statistic that exceeds its critical value, which varies between about
11 and 23.1 depending on m and the estimated error-covariance matrix (HC1, cluster-robust,
HAC, etc.). The conservative rule

First-stage robust F' > 23.1 = instruments strong
First-stage robust F' < 23.1 = instruments weak

is therefore sufficient (but not always necessary) for any number of instruments when k£ = 1.

If several regressors are endogenous (k > 2), each has its own first-stage equation, and the
scalar F' no longer summarizes the joint instrument strength. An alternative is the matrix-
based Kleibergen—Paap tests of Kleibergen and Paap (2006), which extend the Staiger-Stock-
Yogo logic to the multivariate case.

Anderson-Rubin Test

To conduct inference when the first-stage is weak, the usual TSLS ¢-, F- or Wald tests are
unreliable — they tend to over-reject and their confidence intervals undercover.

A simple, robust alternative is the Anderson—Rubin (AR) test. The logic is that, under
the structural model, the instruments Z; should contain no information about the structural
error

u =Y, — XiB— W,

Hence, if the null hypothesis H,: 8 = B, holds, the adjusted outcome Y; — X8, must be un-
correlated with the instruments conditional on the controls. In practice one runs the auxiliary
regression

Y= XiBy= Zim+ Wil +e,
and computes the heteroskedastic- or cluster-robust F-statistic, F,., for the joint null # = 0
(numerator d.f. = m). Reject H, when

Frob > Fm,oo;l—av

where m is the number of instruments. This decision rule delivers correct size regardless of
instrument strength, but it has lower power than the TSLS-based tests when instruments are
strong.
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Repeating the test over a grid of candidate B values and retaining those not rejected yields
a (1 —a) Anderson-Rubin confidence region that remains valid even when the first-stage F' is
very small.

Sargan Test for Instrument Exogeneity

When the set of instruments is overidentified (m > k), we can statistically assess whether all
instruments satisfy the exogeneity condition E[Z,u,] = 0.

The classical procedure is the Sargan test (also called the test of over-identifying restrictions
or the J-test).

Null and alternative hypotheses

o H, (all instruments are valid): every instrument is uncorrelated with the structural error
term wu,.
o H, (at least one instrument is invalid): some instrument is correlated with wu;.

Computation of the Sargan J-statistic

1. Estimate the structural equation by TSLS (using all m instruments) and obtain
the residuals ~
~TSLS __ / I~
;O =Y, = (XiBrgrs + Widpgrs)-

2. Regress ﬁ;rSLS on the full set of instruments and exogenous controls
WS =00+ 01 Zy + o+ 0 Zy, + Wil + e
3. Let F be the (homoskedastic-only) F-statistic for the joint null 6; = --- = 4,, = 0. The

Sargan statistic is
J=m-F.

Under H, and homoskedastic errors, J ~ x2 , in large samples .

If heteroskedasticity is suspected, the Hansen robust J-statistic should be used.
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Decision rule and interpretation

o Reject H, if J exceeds the critical value of the x? , distribution (or if the p-value is
below the chosen significance level). This implies that the data are inconsistent with the
joint exogeneity of the instruments; at least one instrument is likely invalid.

o Fail to reject H, when J is small. This provides no evidence against instrument validity,
but does not prove exogeneity.

Practical remarks

o The test cannot be performed when the model is exactly identified (m = k); then J =0
by construction and instrument validity must be argued on theoretical grounds.

e A significant J-statistic tells us that something is wrong with the instrument set, but not
which instrument(s) are problematic. Empirical judgment and auxiliary tests (e.g. re-
estimating with different subsets of instruments) are required.

9.7.1 Wu-Hausman Test for Endogeneity

The Wu-Hausman test evaluates whether the regressors X, are in fact endogenous. That

is, it tests the null hypothesis of exogeneity, i.e.: Hj : E[X,u;] =0.

Recall the first stage regressions

Xij:ZQﬂ'lj—i-W;ﬂ'gj—i-v j:L...,I{,

K
and let v, = (v;1,...,v;;)" be the stacked error terms of the first-stage regressions.

As discussed previously, Z;ﬂlj + W;7r2j represents the exogenous part of X;; and v;; the
endogenous part. Thus, v, is the endogenous part of the full vector of endogenous regressors
X,;. Therefore,

EX,u;]=0 < Ewu; =0.

Consider § = E[v,v;] ! E[v,u,;], which is the population regression coefficient of the auxiliary
regression

From the definition of § we see that
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Therefore, testing H,, : E[X,u;] =0 is equivalent to testing 6 = 0.

Note that Equation 9.6 is an infeasible regression because u,; and v; are unknown. While v,
can be estimated using the residuals v, from the first-stage regressions, there are no suitable
sample counterparts for u,; available under endogeneity.

We may insert Equation 9.6 into the structural equation given by Equation 9.1:
Y, =X+ Wiy+vd +¢,. (9.7)

Equation 9.7 is a well defined regression model with regressors X,, W,, v, and regression error
€;. 'To see this note that

(i) Elve;] =0 by Equation 9.6;
(ii) E[W ;] =0 because W, are exogenous;
Therefore, we may apply an F-test on the restriction § = 0 in Equation 9.7 when v, is replaced

by v,, which is known as the Wu-Hausman test.

Wu-Hausman Procedure:

1. Run the first-stage regression for each endogenous regressor X, ; and obtain residuals v,
j=1,..k.

2. Stack the residuals as v; = (V;1, ..., V;1)

3. Run the augmented regression:

Y, =X{B+Wiy+9,6+¢,
4. Test Hy : 0 =0 using an F-test or Wald test, which has k restrictions.

If the test does not reject H, then there is evidence for exogenous regressors with E[X,u;] =0,
and the conventional OLS without instruments should be used because it is more efficient than
TSLS.

9.8 Example: Return of Education Revisited

Recall the previous TSLS regression with instrument mothereduc

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc, data = mroz, vcov = "HC1")
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TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.198186 0.489146 0.405167 0.6855588
fit_educ 0.049263 0.038040 1.295045 0.1960095
exper 0.044856 0.015604 2.874667 0.0042481 *x*
I(exper~2) -0.000922 0.000432 -2.135025 0.0333316 *
Signif. codes: O '**xx' 0.001 '*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.67642 Adj. R2: 0.116926
F-test (1st stage), educ: stat = 73.9 , P
Wu-Hausman: stat = 2.9683, p

A

2.2e-16 , on 1 and 424 DoF.
0.085642, on 1 and 423 DoF.

The first stage F-statistic is 73.9 indicating that the instrument is strong. The Wu-Hausman
statistic has a p-value of 0.08, which indicates that educ is significantly endogenous at the
10% level. The Sargan test is not displayed because of exact identification.

We also discussed the T'SLS results with two instruments:

feols(log(wage) ~ exper + exper 2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc
Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 *x*
I(exper~2) -0.000899 0.000430 -2.090220 0.0371931 *
Signif. codes: O '*x*xx' 0.001 '«x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551  Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , P < 2.2e-16 , on 2 and 423 DoF.
Wu-Hausman: stat 2.792589 , p 0.095441, on 1 and 423 DoF.
Sargan: stat 0.378071, p = 0.538637, on 1 DoF.
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Similarly, the F-statistic of 55.4 indicates that the instruments are strong and the Wu-Hausman
test gives some statistical evidence of an endogeneity problem. The Sargan test does not reject,
which indicates no evidence against instrument validity (but does not prove exogeneity of the
instruments).

9.9 R-codes

metrics-sec09.R
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