
9 Instrumental Variables

library(fixest)

In Section 8, we discussed endogeneity problems that lead to the inconsistency of the ordinary
least squares (OLS) estimator. One important solution is the instrumental variables (IV)
method, which allows for consistent estimation under certain conditions when regressors are
endogenous.

9.1 Endogenous Regressors Model

In most applications only a subset of the regressors are treated as endogenous.

Let’s assume that we have 𝑘 endogenous regressors 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′ and 𝑟 exogenous
regressors 𝑊𝑊𝑊 𝑖 = (1, 𝑊𝑖2, … , 𝑊𝑖𝑟)′.

In many practical applications the number of endogenous regressors 𝑘 is small (like 1 or 2).
The exogenous regressors 𝑊𝑊𝑊 𝑖 include the intercept, which is constant and therefore exogenous,
and all control variables for which we do not wish to interpret their coefficients in a causal
sense.

Consider the linear model equation:
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′
𝑖𝛾𝛾𝛾 + 𝑢𝑖, 𝑖 = 1, … , 𝑛. (9.1)

We have

• the dependent variable 𝑌𝑖;
• the error term 𝑢𝑖;
• the endogenous regressors 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′;
• the regression coefficients of interest 𝛽𝛽𝛽;
• the remaining 𝑟 regressors 𝑊𝑊𝑊 𝑖 = (1, 𝑊𝑖2, … , 𝑊𝑖𝑟)′, which are assumed to be exogenous

or simply control variables;
• the regression coefficients of the exogenous variables 𝛾𝛾𝛾.

Recall (A1), which is in this case given by 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖,𝑊𝑊𝑊 𝑖] = 0 but fails under endogeneity.

Since 𝑋𝑋𝑋𝑖 is endogenous, we have 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] ≠ 000, which is a violation of (A1). Thus, the OLS
estimator ̂𝛽𝛽𝛽 for 𝛽𝛽𝛽 is inconsistent.
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9.2 Instrumental Variables Model

To consistently estimate 𝛽𝛽𝛽 in the endogenous regressors model we require additional informa-
tion. One type of information which is commonly used in economic applications are what we
call instruments.

A vector of instrumental variables (IV) 𝑍𝑍𝑍𝑖 = (𝑍𝑖1, … , 𝑍𝑖𝑚) for the endogenous variable
𝑋𝑖𝑗 is a variable that is

1) relevant, meaning that it has a non-zero conditional marginal effect on 𝑋𝑖𝑗 after con-
trolling for 𝑊𝑊𝑊 𝑖. That is, when regressing 𝑋𝑖𝑗 on 𝑍𝑍𝑍𝑖 and 𝑊𝑊𝑊 𝑖 we have:

𝑋𝑖𝑗 = 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 + 𝑣𝑖𝑗, 𝜋𝜋𝜋1𝑗 ≠ 000. (9.2)

2) exogenous with respect to the error term 𝑢𝑖, i.e.:

𝐸[𝑍𝑍𝑍𝑖𝑢𝑖] = 000. (9.3)

This means 𝑍𝑍𝑍𝑖 doesn’t have a direct causal effect on 𝑌𝑖 after controlling for 𝑊𝑊𝑊 𝑖, only an
indirect effect through the endogenous variable 𝑋𝑖𝑗.

If there are 𝑘 endogenous regressors, we need at least 𝑘 instruments. If 𝑚 = 𝑘, we say that
the coefficients are exactly identified and if 𝑚 > 𝑘 we say that they are overidentified. Then
the relevance condition can be expressed jointly as:

rank(𝐸[ ̃𝑍𝑍𝑍𝑖𝑋𝑋𝑋′
𝑖]) = 𝑘 (9.4)

where ̃𝑍𝑍𝑍𝑖 ∶= (𝑍𝑍𝑍′
𝑖,𝑊𝑊𝑊 ′

𝑖)′.

Because 𝜋𝜋𝜋1𝑗 ≠ 000, some part of the variation in 𝑋𝑖𝑗 can be explained by 𝑍𝑍𝑍𝑖. Because 𝑍𝑍𝑍𝑖 is
exogenous, that part of the variation in 𝑋𝑖𝑗 explained by 𝑍𝑍𝑍𝑖 is exogenous as well and can be
used to estimate 𝛽𝑗 consistently.

Example 1: Years of schooling -> wage (returns to education). Ability bias: unobserved
ability affects both education choices and wages. Possible instruments for years of schooling:
distance to nearest colleges, school construction programs, quarter-of-birth, birth order.

Example 2: Market price -> quantity demanded (price elasticity of demand). Simultaneity:
quantity demanded feeds back into equilibrium price. Possible instruments for market price:
input-costs (e.g., raw materials, energy costs), weather conditions, tax changes.

Example 3: Police presence -> crime (deterrence effect). Reverse causality: more police
are deployed to high-crime areas. Possible instruments for police presence: election cycles,
sports/large public events, fire-fighters employment.

The idea of instrumental variable regression is to decompose the endogenous regressor 𝑋𝑖𝑗
into two parts: the “good” exogenous variation explained by the exogenous instruments 𝑍𝑍𝑍𝑖
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and further exogenous control variables, and the “bad” endogenous variation that is correlated
with the error term 𝑢𝑖.

This is exactly what is done in Equation 9.2: 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 +𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 is the part of 𝑋𝑖𝑗 that is exogenous
and 𝑣𝑖𝑗 is the part of 𝑋𝑖𝑗 that is endogenous.

9.3 Two Stage Least Squares

The two stage least squares (TSLS) estimator exploits exactly the idea discussed above: first
extracting the exogenous part of the endogenous regressors explained by the instruments as
described in Equation 9.2 and then use only this exogenous part to estimate the causal rela-
tionship of interest.

The first stage regression is:
𝑋𝑖𝑗 = 𝑍𝑍𝑍′

𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′
𝑖𝜋𝜋𝜋2𝑗 + 𝑣𝑖𝑗.

This equation is sometimes called the reduced form equation for 𝑋𝑖𝑗. We estimate this regres-
sion for 𝑗 = 1, … , 𝑘 and collect the fitted values

𝑋𝑖𝑗 = 𝑍𝑍𝑍′
𝑖 ̂𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖 ̂𝜋𝜋𝜋2𝑗, 𝑗 = 1, … , 𝑘, 𝑖 = 1, … , 𝑛.

Let
𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′, 𝑖 = 1, … , 𝑛.

be the vector of the fitted values for the 𝑘 endogenous variables from the first stage.

Note that 𝑋𝑋𝑋𝑖 is a function of 𝑍𝑍𝑍𝑖 and 𝑊𝑊𝑊 𝑖 and is therefore exogenous, i.e., uncorrelated with
𝑢𝑖.

Then, the second stage regression is

𝑌𝑖 = 𝑋𝑋𝑋
′
𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾 + 𝑤𝑖, 𝑖 = 1, … , 𝑛. (9.5)

Note that 𝑤𝑖 absorbs 𝑣𝑖𝑗, the part of 𝑋𝑖𝑗 that is endogenous. Therefore, the second stage re-
gression does not suffer any more from an endogeneity problem and can be used to consistently
estimate 𝛽𝛽𝛽.
The OLS estimator of the second stage (Equation 9.5), denoted as ̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆 is called the two-
stage least squares estimator for 𝛽𝛽𝛽.
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9.4 TSLS Assumptions

• (A1-iv) 𝐸[𝑢𝑖|𝑊𝑊𝑊 𝑖] = 0.
• (A2-iv) (𝑌𝑖,𝑋𝑋𝑋′

𝑖,𝑊𝑊𝑊 ′
𝑖,𝑍𝑍𝑍′

𝑖)𝑛
𝑖=1 is an i.i.d. sample.

• (A3-iv) All variables have finite kurtosis.

• (A4-iv) The instrument exogeneity and relevance conditions from Equation 9.3 and Equa-
tion 9.4 hold, and 𝐸[ ̃𝑍𝑍𝑍𝑖 ̃𝑍𝑍𝑍

′
𝑖] is invertible

(A1-iv) is the exogeneity condition for the control variables 𝑊𝑊𝑊 𝑖.

(A2-iv) is the standard random sampling assumption for the data.

(A3-iv) is the standard light-tails assumption, meaning large outliers are unlikely

(A4-iv) is the exogeneity and relevance condition for the instruments together with a condition
that excludes perfect multicollinearity

9.5 Large-Sample Properties of TSLS

Under assumptions (A1-iv)–(A4-iv), the TSLS estimator is consistent:

̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆
𝑝

→ 𝛽𝛽𝛽 (as 𝑛 → ∞).

Furthermore, the estimator is asymptotically normal:

√𝑛( ̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000,𝑉𝑉𝑉 𝑇 𝑆𝐿𝑆),

where
𝑉𝑉𝑉 𝑇 𝑆𝐿𝑆 = (𝑄𝑄𝑄𝑋𝑍𝑄𝑄𝑄−1

𝑍𝑍𝑄𝑄𝑄𝑍𝑋)−1𝑄𝑄𝑄𝑋𝑍𝑄𝑄𝑄−1
𝑍𝑍ΩΩΩ𝑄𝑄𝑄−1

𝑍𝑍𝑄𝑄𝑄𝑍𝑋(𝑄𝑄𝑄𝑋𝑍𝑄𝑄𝑄−1
𝑍𝑍𝑄𝑄𝑄𝑍𝑋)−1,

with
𝑄𝑄𝑄𝑋𝑍 = 𝐸[𝑋𝑋𝑋𝑖 ̃𝑍𝑍𝑍

′
𝑖], 𝑄𝑄𝑄𝑍𝑋 = 𝐸[ ̃𝑍𝑍𝑍𝑖𝑋𝑋𝑋′

𝑖], 𝑄𝑄𝑄𝑍𝑍 = 𝐸[ ̃𝑍𝑍𝑍𝑖 ̃𝑍𝑍𝑍
′
𝑖], ΩΩΩ = 𝐸[𝑢2

𝑖 ̃𝑍𝑍𝑍𝑖 ̃𝑍𝑍𝑍
′
𝑖].

The asymptotic variance can be estimated as:

𝑉𝑉𝑉 𝑇 𝑆𝐿𝑆 = 𝑛
𝑛 − 𝑘 − 𝑟( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋
′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋

′
𝑖)( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋
′
𝑖)

−1

This is the HC1 covariance matrix estimator for the TSLS estimator. It can be used to
construct confidence intervals, t-tests, and F-tests in the usual way as discussed in previous
sections.
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9.6 Example: Return of Education

Consider a wage equation for a cross-section of 429 married women:

log(wage) = 𝛽1 + 𝛽2educ𝑖 + 𝛽3exper𝑖 + 𝛽4exper2
𝑖 + 𝑢𝑖,

where

• wage is the wife’s 1975 average hourly earnings
• educ is her educational attainment in years
• exper are the actual years of her labor market experience

We use the dataset mroz available in this repository: link.

OLS yields:

feols(log(wage) ~ educ + exper + exper^2, data = mroz, vcov = "HC1")

OLS estimation, Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.522041 0.201650 -2.58884 9.9611e-03 **
educ 0.107490 0.013219 8.13147 4.7203e-15 ***
exper 0.041567 0.015273 2.72156 6.7651e-03 **
I(exper^2) -0.000811 0.000420 -1.93108 5.4139e-02 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.663299 Adj. R2: 0.150854

If educ is correlated with omitted variables like ability or motivation, the estimated coefficient
for educ does not represent the causal effect of educ on wage.

Ability is an unobserved confounder that affects both educ and wage.

In the following, we assume that mother’s education (mothereduc) is a valid instrument for
educ in the wage equation because:

1) mothereduc should not appear in a wife’s wage equation
2) Instrument relevance: mothereduc should be correlated with educ: high educated mothers

typically have high educated daughters
3) Instrument exogeneity: assume that a woman’s ability and motivation are uncorrelated

with mothereduc
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The first stage regression is:

firststage = lm(educ ~ mothereduc + exper + I(exper^2), data = mroz)
firststage

Call:
lm(formula = educ ~ mothereduc + exper + I(exper^2), data = mroz)

Coefficients:
(Intercept) mothereduc exper I(exper^2)

9.775103 0.267691 0.048862 -0.001281

The second stage regression is:

Xhat = firststage$fitted.values
secondstage = lm(log(wage) ~ Xhat + exper + I(exper^2), data = mroz)
secondstage

Call:
lm(formula = log(wage) ~ Xhat + exper + I(exper^2), data = mroz)

Coefficients:
(Intercept) Xhat exper I(exper^2)
0.1981861 0.0492630 0.0448558 -0.0009221

Note that standard errors from these two separate steps should not be used. Instead, the
feols function gives you the correct standard errors by using the following notation:

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.198186 0.489146 0.405167 0.6855588
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fit_educ 0.049263 0.038040 1.295045 0.1960095
exper 0.044856 0.015604 2.874667 0.0042481 **
I(exper^2) -0.000922 0.000432 -2.135025 0.0333316 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.67642 Adj. R2: 0.116926
F-test (1st stage), educ: stat = 73.9 , p < 2.2e-16 , on 1 and 424 DoF.

Wu-Hausman: stat = 2.9683, p = 0.085642, on 1 and 423 DoF.

• The coefficient for educ drops from 0.107 to 0.059
• OLS overestimates the impact of education on wages
• The t-statistic has a p-value of 0.19
• Using mothereduc as an instrument, educ is no longer significant

To improve the precision of the IV estimator, we can include further instruments like fathere-
duc

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 **
I(exper^2) -0.000899 0.000430 -2.090220 0.0371931 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551 Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , p < 2.2e-16 , on 2 and 423 DoF.

Wu-Hausman: stat = 2.79259 , p = 0.095441, on 1 and 423 DoF.
Sargan: stat = 0.378071, p = 0.538637, on 1 DoF.

• Estimated return to education increases from 0.049 to 0.061
• The t-statistic has a p-value of 0.066
• Stronger instruments leads to more efficient IV estimation: educ is now significantly

different from zero at least at the 10% level.

156



9.7 IV Diagnostics

The TSLS estimator relies on the exogeneity and relevance of the instruments. In empirical
applications, these assumptions should be critically assessed. This section introduces three
diagnostic tools used to evaluate different aspects of the IV strategy:

• The F-test for instrument relevance
• The Sargan test for instrument exogeneity
• The Wu-Hausman test for regressor endogeneity

F-test for instrument relevance

The first-stage F-test indicates whether the instruments 𝑍𝑍𝑍𝑖 ∈ ℝ𝑚 contain enough informa-
tion about the endogenous regressors 𝑋𝑋𝑋𝑖 ∈ ℝ𝑘, conditional on the exogenous controls 𝑊𝑊𝑊 𝑖.

Consider the one endogenous regressor 𝑘 = 1 case with the first-stage regression,

𝑋𝑖 = 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2 + 𝑣𝑖,

and test the joint null hypothesis
𝐻0 ∶ 𝜋𝜋𝜋1 = 000.

To compute the F-statistic for this hypothesis, we follow the usual procedure and use a suit-
able robust covariance matrix (e.g., HC1 or cluster-robust), with an F-statistic whose null
distribution is asymptotically 𝐹𝑚,∞.

If the statistic exceeds its critical value you reject 𝐻0 and conclude the instruments are rele-
vant.

Large-𝑛 5% critical values for 𝐹𝑚,∞ are 3.84 for 𝑚 = 1, 3.00 for 𝑚 = 2, 2.60 for 𝑚 = 3,
etc. (compute with qf(.95, m, Inf)).

Weak instruments

Relevance alone is not enough: the instruments may be weak if their correlation with 𝑋𝑖
is small. Weakness matters because two-stage least squares (2SLS) can then suffer a large
finite-sample bias toward OLS. Define the relative bias

relBias = 𝐸[ ̂𝛽𝑇 𝑆𝐿𝑆] − 𝛽
𝐸[ ̂𝛽𝑂𝐿𝑆] − 𝛽

.

Staiger and Stock (1997) and Stock and Yogo (2005) derive critical values for the homoskedastic
first-stage statistic that control the null hypothesis “relative bias > 10% of the OLS bias” at
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the 5% significance level. With one instrument the 5% cut-off is approximately 10. Hence,
the following rule of thumb is established in applied work:

First-stage 𝐹 > 10 ⇒ instruments strong
First-stage 𝐹 ≤ 10 ⇒ instruments weak

This is a quick approximation that relies on the homoskedasticity assumption and only works
well when 𝑚 is small.

For heteroskedastic (or cluster-robust) settings, Montiel Olea and Pflueger (2013) replace the
standard rule of thumb: To reject the null hypothesis of a relative bias larger than 10% at the
5% level you need a robust F-statistic that exceeds its critical value, which varies between about
11 and 23.1 depending on 𝑚 and the estimated error-covariance matrix (HC1, cluster-robust,
HAC, etc.). The conservative rule

First-stage robust 𝐹 > 23.1 ⇒ instruments strong
First-stage robust 𝐹 ≤ 23.1 ⇒ instruments weak

is therefore sufficient (but not always necessary) for any number of instruments when 𝑘 = 1.
If several regressors are endogenous (𝑘 ≥ 2), each has its own first-stage equation, and the
scalar 𝐹 no longer summarizes the joint instrument strength. An alternative is the matrix-
based Kleibergen–Paap tests of Kleibergen and Paap (2006), which extend the Staiger-Stock-
Yogo logic to the multivariate case.

Anderson-Rubin Test

To conduct inference when the first-stage is weak, the usual TSLS 𝑡-, 𝐹 - or Wald tests are
unreliable – they tend to over-reject and their confidence intervals undercover.

A simple, robust alternative is the Anderson–Rubin (AR) test. The logic is that, under
the structural model, the instruments 𝑍𝑍𝑍𝑖 should contain no information about the structural
error

𝑢𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 − 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾.

Hence, if the null hypothesis 𝐻0 ∶ 𝛽𝛽𝛽 = 𝛽𝛽𝛽0 holds, the adjusted outcome 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽0 must be un-

correlated with the instruments conditional on the controls. In practice one runs the auxiliary
regression

𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽0 = 𝑍𝑍𝑍′

𝑖𝜋𝜋𝜋 + 𝑊𝑊𝑊 ′
𝑖𝜃𝜃𝜃 + 𝑒𝑖

and computes the heteroskedastic- or cluster-robust 𝐹 -statistic, 𝐹rob, for the joint null 𝜋𝜋𝜋 = 0
(numerator d.f. = 𝑚). Reject 𝐻0 when

𝐹rob > 𝐹𝑚,∞;1−𝛼,

where 𝑚 is the number of instruments. This decision rule delivers correct size regardless of
instrument strength, but it has lower power than the TSLS-based tests when instruments are
strong.
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Repeating the test over a grid of candidate 𝛽𝛽𝛽0 values and retaining those not rejected yields
a (1 − 𝛼) Anderson–Rubin confidence region that remains valid even when the first-stage 𝐹 is
very small.

Sargan Test for Instrument Exogeneity

When the set of instruments is overidentified (𝑚 > 𝑘), we can statistically assess whether all
instruments satisfy the exogeneity condition 𝐸[𝑍𝑍𝑍𝑖𝑢𝑖] = 0.
The classical procedure is the Sargan test (also called the test of over-identifying restrictions
or the 𝐽 -test).

Null and alternative hypotheses

• 𝐻0 (all instruments are valid): every instrument is uncorrelated with the structural error
term 𝑢𝑖.

• 𝐻1 (at least one instrument is invalid): some instrument is correlated with 𝑢𝑖.

Computation of the Sargan 𝐽-statistic

1. Estimate the structural equation by TSLS (using all 𝑚 instruments) and obtain
the residuals

𝑢̂TSLS
𝑖 = 𝑌𝑖 − (𝑋𝑋𝑋′

𝑖 ̂𝛽𝛽𝛽𝑇 𝑆𝐿𝑆 + 𝑊𝑊𝑊 ′
𝑖 ̂𝛾𝛾𝛾𝑇 𝑆𝐿𝑆).

2. Regress 𝑢̂TSLS
𝑖 on the full set of instruments and exogenous controls

𝑢̂TSLS
𝑖 = 𝛿0 + 𝛿1𝑍𝑖1 + ⋯ + 𝛿𝑚𝑍𝑖𝑚 + 𝑊𝑊𝑊 ′

𝑖𝜃𝜃𝜃 + 𝑒𝑖.

3. Let 𝐹 be the (homoskedastic-only) 𝐹 -statistic for the joint null 𝛿1 = ⋯ = 𝛿𝑚 = 0. The
Sargan statistic is

𝐽 = 𝑚 ⋅ 𝐹 .

Under 𝐻0 and homoskedastic errors, 𝐽 ∼ 𝜒2
𝑚−𝑘 in large samples .

If heteroskedasticity is suspected, the Hansen robust 𝐽 -statistic should be used.
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Decision rule and interpretation

• Reject 𝐻0 if 𝐽 exceeds the critical value of the 𝜒2
𝑚−𝑘 distribution (or if the p-value is

below the chosen significance level). This implies that the data are inconsistent with the
joint exogeneity of the instruments; at least one instrument is likely invalid.

• Fail to reject 𝐻0 when 𝐽 is small. This provides no evidence against instrument validity,
but does not prove exogeneity.

Practical remarks

• The test cannot be performed when the model is exactly identified (𝑚 = 𝑘); then 𝐽 = 0
by construction and instrument validity must be argued on theoretical grounds.

• A significant 𝐽 -statistic tells us that something is wrong with the instrument set, but not
which instrument(s) are problematic. Empirical judgment and auxiliary tests (e.g. re-
estimating with different subsets of instruments) are required.

9.7.1 Wu-Hausman Test for Endogeneity

The Wu-Hausman test evaluates whether the regressors 𝑋𝑋𝑋𝑖 are in fact endogenous. That
is, it tests the null hypothesis of exogeneity, i.e.: 𝐻0 ∶ 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000.
Recall the first stage regressions

𝑋𝑖𝑗 = 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 + 𝑣𝑖𝑗, 𝑗 = 1, … , 𝑘,

and let 𝑣𝑣𝑣𝑖 = (𝑣𝑖1, … , 𝑣𝑖𝑘)′ be the stacked error terms of the first-stage regressions.

As discussed previously, 𝑍𝑍𝑍′
𝑖𝜋𝜋𝜋1𝑗 + 𝑊𝑊𝑊 ′

𝑖𝜋𝜋𝜋2𝑗 represents the exogenous part of 𝑋𝑖𝑗 and 𝑣𝑖𝑗 the
endogenous part. Thus, 𝑣𝑣𝑣𝑖 is the endogenous part of the full vector of endogenous regressors
𝑋𝑋𝑋𝑖. Therefore,

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000 ⇔ 𝐸[𝑣𝑣𝑣𝑖𝑢𝑖] = 000.
Consider 𝛿𝛿𝛿 = 𝐸[𝑣𝑣𝑣𝑖𝑣𝑣𝑣′

𝑖]−1𝐸[𝑣𝑣𝑣𝑖𝑢𝑖], which is the population regression coefficient of the auxiliary
regression

𝑢𝑖 = 𝑣𝑣𝑣′
𝑖𝛿𝛿𝛿 + 𝜖𝑖, 𝐸[𝑣𝑣𝑣𝑖𝜖𝑖] = 0. (9.6)

From the definition of 𝛿𝛿𝛿 we see that

𝛿𝛿𝛿 = 000 ⇔ 𝐸[𝑣𝑣𝑣𝑖𝑢𝑖] = 000.
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Therefore, testing 𝐻0 ∶ 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000 is equivalent to testing 𝛿𝛿𝛿 = 000.
Note that Equation 9.6 is an infeasible regression because 𝑢𝑖 and 𝑣𝑣𝑣𝑖 are unknown. While 𝑣𝑣𝑣𝑖
can be estimated using the residuals ̂𝑣𝑣𝑣𝑖 from the first-stage regressions, there are no suitable
sample counterparts for 𝑢𝑖 available under endogeneity.

We may insert Equation 9.6 into the structural equation given by Equation 9.1:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾 + 𝑣𝑣𝑣′
𝑖𝛿𝛿𝛿 + 𝜖𝑖. (9.7)

Equation 9.7 is a well defined regression model with regressors 𝑋𝑋𝑋𝑖,𝑊𝑊𝑊 𝑖, 𝑣𝑣𝑣𝑖 and regression error
𝜖𝑖. To see this note that

(i) 𝐸[𝑣𝑣𝑣𝑖𝜖𝑖] = 000 by Equation 9.6;
(ii) 𝐸[𝑊𝑊𝑊 𝑖𝜖𝑖] = 000 because 𝑊𝑊𝑊 𝑖 are exogenous;
(iii) 𝐸[𝑋𝑋𝑋𝑖𝜖𝑖] = 000 because 𝐸[𝑋𝑋𝑋𝑖𝜖𝑖] = 𝐸[𝑣𝑣𝑣𝑖𝜖𝑖].

Therefore, we may apply an F-test on the restriction 𝛿𝛿𝛿 = 000 in Equation 9.7 when 𝑣𝑣𝑣𝑖 is replaced
by ̂𝑣𝑣𝑣𝑖, which is known as the Wu-Hausman test.

Wu-Hausman Procedure:

1. Run the first-stage regression for each endogenous regressor 𝑋𝑖𝑗 and obtain residuals ̂𝑣𝑖𝑗,
𝑗 = 1, … , 𝑘.

2. Stack the residuals as ̂𝑣𝑣𝑣𝑖 = ( ̂𝑣𝑖1, … , ̂𝑣𝑖𝑘)′.
3. Run the augmented regression:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑊𝑊𝑊 ′

𝑖𝛾𝛾𝛾 + ̂𝑣𝑣𝑣′
𝑖𝛿𝛿𝛿 + 𝜀𝑖.

4. Test 𝐻0 ∶ 𝛿𝛿𝛿 = 000 using an F-test or Wald test, which has 𝑘 restrictions.

If the test does not reject 𝐻0, then there is evidence for exogenous regressors with 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 0,
and the conventional OLS without instruments should be used because it is more efficient than
TSLS.

9.8 Example: Return of Education Revisited

Recall the previous TSLS regression with instrument mothereduc

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc, data = mroz, vcov = "HC1")
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TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.198186 0.489146 0.405167 0.6855588
fit_educ 0.049263 0.038040 1.295045 0.1960095
exper 0.044856 0.015604 2.874667 0.0042481 **
I(exper^2) -0.000922 0.000432 -2.135025 0.0333316 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.67642 Adj. R2: 0.116926
F-test (1st stage), educ: stat = 73.9 , p < 2.2e-16 , on 1 and 424 DoF.

Wu-Hausman: stat = 2.9683, p = 0.085642, on 1 and 423 DoF.

The first stage F-statistic is 73.9 indicating that the instrument is strong. The Wu-Hausman
statistic has a p-value of 0.08, which indicates that educ is significantly endogenous at the
10% level. The Sargan test is not displayed because of exact identification.

We also discussed the TSLS results with two instruments:

feols(log(wage) ~ exper + exper^2 | educ ~ mothereduc + fathereduc, data = mroz, vcov = "HC1")

TSLS estimation - Dep. Var.: log(wage)
Endo. : educ
Instr. : mothereduc, fathereduc

Second stage: Dep. Var.: log(wage)
Observations: 428
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.048100 0.429798 0.111914 0.9109447
fit_educ 0.061397 0.033339 1.841609 0.0662307 .
exper 0.044170 0.015546 2.841202 0.0047111 **
I(exper^2) -0.000899 0.000430 -2.090220 0.0371931 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.671551 Adj. R2: 0.129593
F-test (1st stage), educ: stat = 55.4 , p < 2.2e-16 , on 2 and 423 DoF.

Wu-Hausman: stat = 2.79259 , p = 0.095441, on 1 and 423 DoF.
Sargan: stat = 0.378071, p = 0.538637, on 1 DoF.
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Similarly, the F-statistic of 55.4 indicates that the instruments are strong and the Wu-Hausman
test gives some statistical evidence of an endogeneity problem. The Sargan test does not reject,
which indicates no evidence against instrument validity (but does not prove exogeneity of the
instruments).

9.9 R-codes

metrics-sec09.R
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